Рассмотрим максимальное число победных игр: 75 : 3 = 25 (игр), но при таком варианте игр вничью быть не может.
Будем уменьшать число победных игр и считать, сколько за это команда получит очков. Предположим, что победных игр 24: 24 · 3 = 72. Таким образом, в данной конфигурации может быть 24 победы, 3 поражения и 3 ничьи.
Предположим, что победных игр 23: 23 · 3 = 69. Получаем, что 6 очков за ничью и 0 очков за поражение.
Предположим, что победных игр 22: 22 · 3 = 66. Получаем, что такой ситуации быть не может, так как максимальное число игр вничью — восемь, следовательно, 8 очков — 66 + 8 = 74, а в условии сказано, что команда набрала 75 очков.
Таким образом, наибольшее число ничейных матчей — 6.
1). Задача, данная в приложении:
Высота СD прямоугольного треугольника АВС, проведенная из вершины прямого угла, делит гипотенузу на отрезки АD и DB. Найдите катет АС, если DB=3,2 см, AD=1,8 см
Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Проекция АС=АD=1,8, гипотенуза АВ=AD+DB=3,2+1,8=5 см
Тогда АС²=1,8*5=9⇒
АС=√9=3 см
–––––––––––––
2). Рисунок к первой задаче подходит и ко второй.
Высота CD прямоугольного треугольника АВС, проведенная из вершины прямого угла, делит гипотенузу АВ на отрезки АD и DB. Найдите гипотенузу АВ , если CD=6 см, а отрезок AD на 5 см короче отрезка DB.
Пусть DB=х.
Тогда AD=х-5
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
СD²=AD•B
36=х²-5х
х²-5х-36=0
Решив квадратное уравнение, получим
х₁=9
х₂= -4 ( не подходит)
ВD=9 см
AD=4 см
AB=9+4=13 см
1 840м = 1 км 840м, 1 035м = 1км 35м
3дм 8см = 30см + 8см, 1м 86см = 100см+86см, 7м 5см = 700см + 5см, 70мм= 7см, 980мм= 98см
65мм = 6см 5мм, 92мм = 9см 2мм, 548мм = 54см 8мм