Если только так. №1 а) Рассмотрим ΔBCD. ∠BDC = 90°, т.к. CD⊥BD. CD = AB = 34 см Найдем ВС по т. Пифагора. BC = √(BD² + 34²) (см)
б) Рассмотрим ΔBCD. ∠BDC = 90°, т.к. CD⊥BD. CD = AB = 8,5 дм Найдем ВС по т. Пифагора. BC = √(BD² + 8,5²) (дм)
№2 а) В прямоугольном треугольнике, катет лежащий напротив угла в 30°, равен половине гипотенузы. 17 * 2 = 34 (мм) - длина гипотенузы. ответ: 34 мм.
в) 48 : 24 = 1/2 - это отношение катета и гипотенузы. Т. к. катет равен половине гипотенузы, значит, он лежит напротив угла в 30°. Т.к. Δ прямоугольный, значит один из углов равен 90°. 180° - 90° - 30° = 60° - третий угол. ответ: 90°; 60°; 30°.
Верные утверждения: 1) В любой треугольник можно вписать окружность.
5) Любые два равносторонних треугольника подобны. По первому признаку подобия треугольников - любые равносторонние треугольники будут подобны, т.к. 2 угла одного треугольника равны 2-ум углам другого (по 60°)
НЕ ВЕРНЫЕ УТВЕРЖДЕНИЯ: 2) Любые два прямоугольных треугольника подобны. НЕТ, необходимо, чтобы 2 угла были равны, по первому признаку подобия треугольников.
3) Центр описанной около треугольника окружности лежит в точке пересечения биссектрис углов треугольника. НЕт, центр - это точка пересечения серединных перпендикуляров к сторонам треугольника
4) Площадь трапеции равна сумме оснований, умноженной на высоту. НЕТ, площадь трапеции - это ПОЛУСУММА оснований умноженная на высоту.
1-8/9=1/9 луга осталось - 15га
15:1/9=135га весь луг