Решить ! "расстояние 150 км между бобровом и воронежем трактор проехал со скоростью 25км/ч, а обратно он шел со скоростью 30 км/ч. какое время он потратил на весь путь?
Допустим, нам не везет, и цифры при каждом броске выпадают разные: 1; 2; 3; 4; 5; 6. Так безрезультатно мы сделали 6 бросков. Но уж в седьмой раз обязательно будет цифра, которая уже выпадала: возможных цифр-то всего 6. Т.к нам надо не определенную цифру, а просто повторяющуюся, то 6+1 =7 (раз) число бросков, оно на один больше вариантов цифр. Возможно ( с вероятностью 1/6) второй раз выпадет тоже самое число. Но это вероятность. А повторяющаяся цифра в в седьмой раз выпадет обязательно. ответ: 7 бросков.
У кубика всього 6 цифр. Припустимо, нам не щастить, і цифри при кожному кидку випадає різні: 1; 2; 3; 4; 5; 6. Так безрезультатно ми зробили 6 кидків. Але вже в сьомий раз обов'язково буде цифра, яка вже випадала, можливих цифр-то всього 6. ъ Тому нам треба не певну цифру, а просто повторюється, то 6+1 =7 (разів) кількість кидків, воно на один більше варіантів цифр. Можливо (з ймовірністю 1/6) другий раз випаде теж саме число. Але це ймовірність. А повторювана цифра в сьомий раз випаде обов'язково. Відповідь: 7 кидків.
Кумир я не знаю, а что эту экзотика ещё преподают? Он нигде, кроме школ, никогда не использовался. Напишу только алгоритм. 1) Начало 2) Ввод исходного числа n. 3) n = n*n // возводим n в квадрат 4) n = 10*n // умножаем на 10. Теперь десятые доли стали единицами 5) n = [n] // оставляет целую часть, дробную отбрасываем 6) n = n - [n/10]*10 // вычисляем остаток от деления на 10, то есть цифру единиц. 7) Вывод n 8) Конец. Объяснение. Допустим, мы ввели n = 1,4. В 3 пункте мы умножили его само на себя, то есть возвели в квадрат. Стало n = 1,96. Нам нужно получить цифру 9. В 4 пункте мы умножили число на 10, получили n = 19,6. В 5 пункте отбросили дробную часть, стало n = 19. В 6 пункте самая трудная операция: n = n - [n/10]*10 = 19 - [1,9]*10 = 19 - 1*10 = 9 Таким образом, мы получаем последнюю цифру любого целого числа, то есть остаток от деления на 10. Вообще-то вместо этой сложной формулы во многих языках есть готовая функция Mod, дающая сразу остаток от деления. Пишется так: n = n Mod 10 Из числа 19 сразу получаем 9. Если такая функция есть в Кумире, используйте её. Если нет, тогда мою формулу.
150/30=5 часов обратно
6+5=11 часов всего