Выбрать те числа, разделив на которые число 120 мы получим целое число. 1) 5, 15, 24, 60 Выбрать те числа, при делении которых на число 25 получим целое число. 2) 50, 75, 100
А) sinxcosx+√3 cos^2x=0 cosx(sinx+√3cosx)=0 произведение двух сомножителей равно нулю тогда, когда хотя бы один из множителей равен 0, а другой при этом существует cosx=0 x=Π/2+Πn, n€Z sinx+√3cosx=0 | : на cosx tgx+√3=0 tgx=-√3 x=-Π/3+Πk, k€Z ответ: -Π/3+Πk, k€Z; Π/2+Πn, n€Z б) cos2x+9sinx+4=0 1-2sin^2x+9sinx+4=0 -2sin^2x+9sinx+5=0 Пусть t=sinx, где t€[-1;1], тогда -2t^2+9t+5=0 D=81+40=121 t1=-9-11/-4=5 посторонний корень t2=-9+11/-4=-1/2 Вернёмся к замене sinx=-1/2 x1=-5Π/6+2Πn, n€Z x2=-Π/6+2Πn, n€Z ответ: -5Π/6+2Πn, -Π/6+2Πn, n€Z
ДУМАЕМ 1)Догонят из-за разности скоростей. 2) Второму надо проехать больше - третий за 15 минут уедет. РЕШАЕМ Время встречи первого - догнал третьего. t(1,3) = S / (V1-V3) = 30/(15-9) = 5 часов - Переводим 15 мин = 0,25 часа. Вычисляем путь третьего за 0,25 часа S3 = V3*t3 = 9*0.25 = 2.25 км. Время встречи встречи второго - догнал третьего t(2,3) = (S +S3)/(V2-V3) =(30+2.25)/(15-9) = 5.375 час = 5 час 22.5 мин. Интервал будет в 22.5 мин. - УРА!, но не правильно. ДУМАЕМ ещё сильнее. НАДО найти ИНТЕРВАЛ времени, который возник из-за разности путей после разного времени старта t3=15 мин за счет разности скоростей 15-9. РЕШАЕМ В ОДНО УРАВНЕНИЕ. dT= (V3*t3) / (V2-V3) = 9*0.25/(15-9) = 9/6*0.75= 0.375 час = 22,5 мин. Вот это ПРАВИЛЬНОЕ решение
1) 15;60
2)50;75;100