Математика зародилась и активно развивалась у Древних Шумеров в междуречье, на месте будущей Персии и современного Ирака, одной из самой древнейшей из известных антропологам Цивилизаций вместе с Анатолийскими и Шумерскими языками, которые позже породили все европейские языки.
Примерно 6 000 лет назад (4 000 лет до Нашей Эры) шумеры уже использовали натуральные числа (1,2,3,4,5,6...) и действие сложения.
Позже стало использоваться и действие вычитания, как обратное сложению. Правда, у Шумеров не использовалось вычитание больших чисел из маленьких. Операция 3–7 считалась бессмысленной, поскольку не приводила ни к какому натуральному результату.
Примерно 5 000 лет назад (3 000 лет до Нашей Эры) в обиход стали входить действие умножения и деления. Эти действия, как и ранее, производились только над натуральными числами.
Не найдено никаких доказательств того, что у Шумеров была какая-то более менее цельная последовательная школа изучения математики. Знания и навыки оперирования арифметическими действиями передавались из уст в уста. Сама математика использовалась в торгово-менных операциях и в наблюдениях за периодичностью смены дней и лет. Ещё не было ни алгебры, ни механики.
Примерно 5 000 лет назад (3 000 лет до Нашей Эры) математические знания рас по всему аравийскому полуострову и набирающему силу Древнему Египту.
В Египте математические знания получили систематизацию. В обиход были введены дробные положительные числа. Примерно 3 500 лет назад (1 500 лет до Нашей Эры) появились первые упоминания об отрицательных числах в долговых обязательствах.
Четыре основные арифметические действия были известны, таким образом, уже 3 500–6 000 лет. Однако тогда эти действия обозначались словами, союзами или какими-то местными знаками, у разных народов по-разному.
Сам знак плюс «+» вошёл в обиход во времена раннего Возрождения, примерно в XV–XVI веке после опубликования работ известного математика-систематизатора и логика Франсуа Виета. Тогда же вошёл в употребление из знак тире «–» в качестве знака вычитания.
Знак умножения в виде диагонального креста «х» – использовался в английской математической школе в XV–XVII в.в. и тогда же получил рас Знак умножения в виде точки – использовался в немецкой математической школе в XV–XVII в.в., в частности на нём активно настаивал Лейбниц, как на общепризнанном математическом знаке.
Знак умножение в виде точки долгое время оставался только в высшей алгебре. В арифметике же во всём мире, включая и СССР, до 1940 года использовался знак диагонального креста «х», т.е. 2 умножить на 3 – записывалось, как « 2 х 3 ».
В послевоенные годы в СССР в школах стал активно использоваться знак Лейбница. Трудно сказать, произошло ли это из-за более высокого уровня преподавания математики и более частого обращения преподавателей к работам Лейбница или в силу банальной экономии карандашей, но уже в 50-е годы, большинство книг по арифметике для начальных классов, издаваемых в СССР, публиковались со знаком умножения Лейбница в виде точки.
В 60-е годы в средней школе во всех странах Мира постепенно перешли к обозначению умножения знаком Лейбница в виде точки. Исключением осталась Великобритания, в школах которой и по сей день умножение обозначается крестом.
Всё тоже самое можно сказать и о знаке деления. Косая или прямая черта – это английская школа. Двоеточие – это обозначение Лейбница. Позже в XVIII в. в английской школе было введено компромиссное обозначение деления в виде двоеточие с разделительной чертой « ÷ » .
Пошаговое объяснение:
1) Разложите на простые множители число:
а)
75=3·5·5
36=2·2·3·3
18=2·3·3
28=2·2·7
63=3·3·7
8=2·2·2
16=2·2·2·2
48=2·2·2·2·3
б)
20=2·2·5
45=3·3·5
50=2·5·5
12=2·2·3
98=2·7·7
40=2·2·2·5
80=2·2·2·2·5
112=2·2·2·2·7
2) Выполните действия, используя результаты прелылущего задания:
а)
б)
в)
г)
Обрати внимание как легко сокращаются дроби когда числа разложены на простые множители.
Всякое составное число может быть единственным образом представлено в виде произведения простых множителей.
Для небольших чисел это разложение легкоделается на основе таблицы умножения. Для больших чисел рекомендуют пользоваться следующим
Для этого советую воспользоваться таблицей простых чисел:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199
начинают подбор строго с наименьшего числи и далее по возрастанию
Простыми они названы потому что делятся на себя и единицу