Дано: Решение: v₁ = 56,4 км/ч 1) К моменту старта легковой машины t₁ = 1 ч автобус проехал: S₁ = v₁t₁ = 56,4 (км) t₂ = 2 ч 2) Скорость сближения легковой машины S'₂ = 10 км и автобуса: v = v₂ - v₁ = v₂ - 56,4 (км/ч) 3) Расстояние, которое нужно было Найти: преодолеть легковой машине, чтобы v₂ - ? догнать автобус и перегнать его на 10 км со скоростью сближения v = v₂ - 56,4 км/ч: S = S₁+S'₂ = 56,4+10 = 66,4 км Тогда: S = vt₂ => 66,4 = (v₂ - 56,4)*2 66,4 = 2v₂ - 112,8 2v₂ = 179,2 v₂ = 89,6 (км/ч)
Пусть скорость течения х, скорость катера k*х, и они плыли t часов. Тогда расстояние, которое проплыл 1-й катер вверх по реке (k*x-x)*t= x*t*(k-1), 2-й катер вниз по реке х*t*(k+1). Обратно 1-й катер затратил времени x*t*(k-1)/(x*(k+1), а 2-ой катер затратил времени x*t*(k+1)/(x*(k-1). Имеем единственное уравнение: 1,5*x*t*(k-1)/(x*(k+1)=x*t*(k+1)/(x*(k-1), Тогда имеем: ((к+1)/(к-1))^2=1,5. Решаем полученное квадратное уравнение: k^2+2*k+1=1,5*k^2-3*k+1,5 0,5*k^2-5*k+0,5=0 k^2-10*k+1=0 k=5 ± √(24). Очевидно. что k > 1, значит k=5 + √(24).
7/3х-13/5=17/15
7/3х=17/15+39/15=56/15
х=56/15 : 7/3=56/15 · 3/7=8/5=1 3/5
2) (4 8/15 - 1 1/3)·1 7/8=(68/15 - 4/3)·15/8=68/15 · 15/8 - 4/3 · 15/8=17/2 - 5/2=12/2=6
3) (7/12+1 1/10х):7 1/4=1/3
(7/12+11/10х): 29/4=1/3
7/12+11/10х=1/3 · 29/4=29/12
11/10х=29/12 :- 7/12=22/12=11/6
х=11/6 : 11/10=11/6 · 10/11=5/3=1 2/3