![M=2x^2=3y^3,M\in \mathbb{N}\Rightarrow x,y\in \mathbb{N}\\y^3=\frac{2}{3}\cdot x^2\\\\y=\sqrt[3]{\frac{2x^2}{3}}](/tpl/images/0931/7652/68bca.png)
Чтобы "у" был натуральным числом, надо чтобы
![\sqrt[3]{\frac{2x^2}{3}}\in \mathbb{N}.](/tpl/images/0931/7652/60589.png)
Таким образом 2x²/3 должно раскладываться на произведение простых чисел, которые будут в кубе и наименьшими т.к. M - наименьшее, а значит и x,y - наименьшие.
2 уже есть, а "x" - натуральное, поэтому "х" должно быть произведением какого-то числа и 2 т.к. 2·2²=2³, да можно было x=2⁴, тогда 2·2⁸=2⁹, но нас интересует наименьшее. Так же нам надо избавиться от 3 в знаменателе, поэтому "х" должно быть произведением какого-то числа на 3ⁿ, при этом n - наименьшее, значит n=2 т.к. (3²)²:3=3³
Получается x=2·3² и подкоренное выражение 2³·3³, значит "у" будет натуральным.
На всякий случай проверим и найдём M.
![\begin{Bmatrix}y=\sqrt[3]{\frac{2x^2}{3}}\\x=2\cdot 3^2\end{matrix};y=\sqrt[3]{2^3\cdot 3^3}=6\\M=3\cdot 6^3=3\cdot 216=648\\M=2\cdot 18^2=2\cdot 324=648.\\\\Otvet\!\!:\;648.](/tpl/images/0931/7652/3cee4.png)
Поскольку числа 49 и 9 взаимно простые, тоесть не имеют общих делителей, кроме числа 1, то для того, чтобы некоторое число было кратным одновременно 49 и 9, необходимо, чтобы это число было кратным произведению чисел 49 и 9.
Всякое число х, кратное произведению чисел 49 и 9 можно записать в виде х = 49 * 9 * k, где k — некоторое целое число.
Перебирая значения k, начиная от k = 1, найдем все трехзначные числа, которые можно представить в виде 49 * 9 * k.
При k = 1 получаем х = 49 * 9 * 1 = 441.
При k = 2 получаем х = 49 * 9 * 2 = 882.
При k = 3 получаем х = 49 * 9 * 3 = 1323.
Следовательно, начиная с k = 3 число знаков в записи чисел вида 49 * 9 * k становится больше трех.
Следовательно, существует 2 трехзначные числа, кратные одновременно 49 и 9 : 441 и 882.
Их сумма равна: 441 + 882 = 1323.
ответ:1323.
пример:
7|2
–
3 (ост. 1)