Олимпиа́да — крупнейшие международные комплексные спортивные соревнования, которые проводятся каждые четыре года. традиция, существовавшая в древней греции, была возрождена в конце xix века французским общественным деятелем пьером де кубертеном. олимпийские игры, известные также как летние олимпийские игры, проводились каждые четыре года, начиная с 1896, за исключением лет, пришедшихся на мировые войны. в 1924 году были учреждены зимние олимпийские игры, которые первоначально проводились в тот же год, что и летние. однако начиная с 1994 года, время проведения зимних олимпийских игр сдвинуто на два года относительно времени проведения летних игр. в тех же местах проведения олимпиад спустя некоторое время проводятся паралимпийские игры для инвалидов и других людей с ограниченными возможностями. аналогом олимпиад являются также летние, зимние и весенние юношеские олимпийские игры и студенческие универсиады. олимпийская идея и после запрета античных состязаний не исчезла насовсем. например, в в течение xvii века неоднократно проводились «олимпийские» соревнования и состязания. позже похожие соревнования организовывались во франции и греции. тем не менее, это были небольшие мероприятия, носившие, в лучшем случае, региональный характер. первыми настоящими предшественниками современных олимпийских игр являются «олимпии» , которые проводились регулярно в период 1859—1888 годов. идея возрождения олимпийских игр в греции принадлежала поэту панайотису суцосу, воплотил её в жизнь общественный деятель евангелис заппас. в 1766, в результате археологических раскопок в олимпии, были обнаружены спортивные и храмовые сооружения. в 1875 археологические исследования и раскопки продолжились под руководством. в то время в европе были в моде романтическо-идеалистические представления об античности. желание возродить олимпийское мышление и культуру распространилось довольно быстро по всей европе. французский барон пьер де кубертен (фр. pierre de coubertin), осмысливая впоследствии вклад франции, сказал: «германия раскопала то, что осталось от древней олимпии. почему франция не может восстановить старое величие? » . по мнению кубертена, именно слабое состояние французских солдат стало одной из причин поражения французов в франко- войне 1870—1871. он стремился изменить положение с улучшения культуры французов. одновременно с этим, он хотел преодолеть национальный эгоизм и сделать вклад в борьбу за мир и международное взаимопонимание. «молодежь мира» должна была мериться силами в спортивных состязаниях, а не на полях битв. возрождение олимпийских игр казалось в его глазах лучшим решением, чтобы достичь обеих целей. на конгрессе, проведённом 16-23 июня 1894 года в сорбонне (парижский университет) , он представил свои мысли и идеи международной публике. в последний день конгресса было принято решение о том, что первые олимпийские игры современности должны состояться в 1896 году в афинах, в стране-родоначальнице игр — греции. чтобы организовать проведение игр, был основан международный олимпийский комитет (мок) . первым президентом комитета стал грек деметриус викелас, который был президентом до окончания i олимпийских игр 1896 года. генеральным секретарём стал барон пьер де кубертен.
Далее в тексте будем подразумевать под биквадратным трёхчленом и его коэффициентами выражение где под подразумевается квадрат переменной т.е. а его корнями – квадраты искомых корней, если они различны, или его чётным корнем если корень биквадратного трёхчлена – единственный.
Наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле тогда Потребуем, чтобы откуда следует, что
Уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. Но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при а корень биквадратного трёхчлена станет чётным давая два искомых корня Это значение как раз уже и есть одно из искомых решений для параметра
Когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно Отсюда следует, что правый квадрат искомых корней – всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.
Левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки А значит, значение всего трёхчлена взятое от должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.