х - 30 =20
х =20+30
х=50
проверка :
50 -30=20
х *3 =30
х=30 :3
х=10
проверка :
10 *3 =30
х +999 =5 000
х =5 000 - 999
х=4 001
проверка :
4 001 + 999 =5 000
х +5 = 9 987
х=9 987 -5
х=9 982
проверка :
9 982 + 5 = 9 987
Все такие числа разобьем на две группы: в записи которых есть ноль и в записи которых нет нуля.
1. Найдем количество чисел, в записи которых нет нуля.
Найдем число выбрать 2 цифры, участвующие в записи числа, из 9 оставшихся:
C_9^2=\dfrac{9\cdot8}{2} =36C
9
2
=
2
9⋅8
=36
Найдем сколькими можно составить четырехзначное число, используя для этого две цифры:
2^4=162
4
=16
Заметим, что в одном из этих используется только первая цифра и еще в одном из используется только вторая. Так как по условию необходимо использовать ровно две различные цифры, то эти не нужно учитывать. Таким образом, число составить четырехзначное число с требуемым ограничением:
2^4-2=142
4
−2=14
Итак, выбрать цифры для записи числа можно и для каждого из них можно записать 14 чисел. Значит, всего чисел, в записи которых нет нуля, можно записать:
36\cdot14=\boxed{504}36⋅14=
504
2. Найдем количество чисел, в записи которых есть ноль.
Вторую цифру для записи числа из 9 оставшихся можно выбрать, очевидно
Найдем сколькими можно составить четырехзначное число, используя для этого две цифры, одна из которых 0. На первом месте не может находиться цифра 0, так как в противном случае число не будет четырехзначным. Значит, вариантов составления четырехзначного числа:
2^3=82
3
=8
Отметим, что среди этих есть один недопустимый - когда на последних трех местах повторяется цифра, отличная от нуля. На первом месте однозначно находится она же, значит всего в записи числа будет использоваться одна цифра, что не соответствует условию. Значит, число составить четырехзначное число, учитывая ограничение:
2^3-1=72
3
−1=7
Таким образом, выбрать цифры для записи числа можно и для каждого из них можно записать 7 чисел. Значит, всего чисел, в записи которых есть ноль, можно записать:
9\cdot7=\boxed{63}9⋅7=
63
3. Общее количество четырехзначных чисел, в записи которых используется ровно две различные цифры:
504+63=\boxed{567}504+63=
567
ответ: 567
Все такие числа разобьем на две группы: в записи которых есть ноль и в записи которых нет нуля.
1. Найдем количество чисел, в записи которых нет нуля.
Найдем число выбрать 2 цифры, участвующие в записи числа, из 9 оставшихся:
C_9^2=\dfrac{9\cdot8}{2} =36C
9
2
=
2
9⋅8
=36
Найдем сколькими можно составить четырехзначное число, используя для этого две цифры:
2^4=162
4
=16
Заметим, что в одном из этих используется только первая цифра и еще в одном из используется только вторая. Так как по условию необходимо использовать ровно две различные цифры, то эти не нужно учитывать. Таким образом, число составить четырехзначное число с требуемым ограничением:
2^4-2=142
4
−2=14
Итак, выбрать цифры для записи числа можно и для каждого из них можно записать 14 чисел. Значит, всего чисел, в записи которых нет нуля, можно записать:
36\cdot14=\boxed{504}36⋅14=
504
2. Найдем количество чисел, в записи которых есть ноль.
Вторую цифру для записи числа из 9 оставшихся можно выбрать, очевидно
Найдем сколькими можно составить четырехзначное число, используя для этого две цифры, одна из которых 0. На первом месте не может находиться цифра 0, так как в противном случае число не будет четырехзначным. Значит, вариантов составления четырехзначного числа:
2^3=82
3
=8
Отметим, что среди этих есть один недопустимый - когда на последних трех местах повторяется цифра, отличная от нуля. На первом месте однозначно находится она же, значит всего в записи числа будет использоваться одна цифра, что не соответствует условию. Значит, число составить четырехзначное число, учитывая ограничение:
2^3-1=72
3
−1=7
Таким образом, выбрать цифры для записи числа можно и для каждого из них можно записать 7 чисел. Значит, всего чисел, в записи которых есть ноль, можно записать:
9\cdot7=\boxed{63}9⋅7=
63
3. Общее количество четырехзначных чисел, в записи которых используется ровно две различные цифры:
504+63=\boxed{567}504+63=
567
ответ: 567
х-30=20
х= 20+30
х= 50
50-30=20
х*3=30
х=30:3
х=10
10*3=30
х+999=5000
х= 5000-999
х= 4001
4001+999=5000
х+5=9987
х= 9987-5
х= 9982
9982+5=9987