Задание 1.
(4,1x + 2,5) – (2,3x + 3,9) = 1,6x;
4,1x + 2,5 - 2,3x - 3,9 = 1,6x;
4,1x - 2,3x - 1,6x = - 2,5 + 3,9;
0,2x = 1,4;
x = 1,4 ÷ 0,2;
x = 7.
ответ: 7.
Задание 2.
5ax = 14 – x , при x = 4.
5a × 4 = 14 - 4;
20a = 10;
a = 10 ÷ 20;
a = 0,5.
ответ: 0,5.
Задание 3.
5x − 0,4 (7x − 9) = 2,94;
5x - 2,8x + 3,6 = 2,94;
5x - 2,8x = 2,94 - 3,6;
2,2x = -0,66;
x = -0,66 ÷ 2,2;
x = -0,3.
ответ: -0,3.
Задание 4.
−3 (2,1x − 4) − 1,9 = 2,6 + 1,2 (0,5 − 5x);
-6,3x + 12 - 1,9 = 2,6 + 0,6 - 6x;
-6,3x + 6x = 2,6 + 0,6 - 12 + 1,9;
-0,3x = -6,9;
x = -6,9 ÷ (-0,3);
x = 23.
ответ: 23.
Удачи Вам! :)
Саму задачу можно переформулировать немного по-другому:
Было: Расставить минимальное количество шашек на шахматной доске 8 на 8, так чтобы было невозможно поставить коня так, чтобы он не бил ни одной шашки.Переходит в: расставить на доске минимальное количество коней так, чтобы было невозможно поставить шашку не под удар коня.Если мы решим вторую задачу, то просто нужно будет заменить коней шашками - и мы получим искомое расположение.
По поводу второй задачи можно заметить, что:
Разные кони должны бить выделенные красным клетки на рисунке ниже.Отсюда следует, что мы не можем расставить менее, чем 4 * 3 = 12 коней. Если это можно сделать, то задача решится. И да, это получилось сделать (рисунок 2).
Заменяем коней шашками и получаем ответ: 12 коней.
ответ: 12 шашек.
Сделаем замену. Пусть 2019 = n, тогда выражение примет вид: 9^n + 5^n.
Для ответа на вопрос будем подставлять вместо n различные нечётные числа, так как 2019 - нечётное число.
Пусть n = 1, тогда выражение примет вид: 9 + 5 = 14 - не делится на 4.
Пусть n = 3, тогда выражение примет вид: 729 + 125 = 854 - не делится на 4.
Пусть n = 5, тогда выражение примет вид: 59049 + 3125 = 62174 - не делится на 4.
Делаем вывод: сумма 9²⁰¹⁹ + 5²⁰¹⁹ не делится на 4.