1. пусть s — площадь ромба, d₁, d₂ и a — его диагонали и сторона соответсвенно. тогда s = 0.5d₁d₂ ⇔ 19.2 = 3.2d₁ ⇔ d₁ = 6 м. диагонали ромба делят фигуру на 4 равных прямоугольных треугольника с катетами 0.5d₁ и 0.5d₂, то есть 3 метра и 1.6 метра. по теореме пифагора гипотенуза «a» в таком треугольнике равна 4.8 м. тогда периметр ромба p равен 4a = 19.2 (м²). ответ: 19.2 м². 2. пусть s — площадь ромба, d₁, d₂. тогда d₁/d₂ = 3/4, откуда d₂ = 4d₁/3. в то же время площадь ромба s равна 0.5d₁d₂ = 0.5d₁·4d₁/3 = 2d₁²/3. решая уравнение s = 2d₁²/3 = 54 относительно d₁, получаем, что d₁ = 9 см. тогда d₂ = 4d₁/3 = 4·9/3 = 12 см. ответ: 9 см и 12 см.
Дополнительно построим PD, тогда (т.к. вписанный угол DPB опирается на диаметр) DPB = 90 градусов, причём AP = 1, (а т.к. AP = 1, и BP = 3, то AB = BC = CD = AD = 2), AD = 2, тогда PD - катет в треугольнике DPA со сторонами 2 и 1, т.е. PD = √3. BD - гипотенуза в треугольнике PBD, поэтому BD = √(3 + 9)=2√3. Пусть O - точка пересечения диагоналей, тогда AO - катет в треугольнике AOB со сторонами √3 и 2 (т.к. диагонали в ромбе делятся пополам точкой пересечения). Значит, AO = 1, тогда меньшая диагональ равна 2 AO = 2