Запишем условие в виде равенства: 7xx=xx7+486, где x обозначают неизвестные цифры. Зная последние цифры слагаемых в правой части, из правил сложения в столбик определяем, что последняя цифра суммы равна 2. Во втором числе эта цифра стоит на предпоследнем месте, поэтому наше равенство имеет такой вид 7x3=x37+486. Складывая 37 и 86, определяем что сумма *37+486 оканчивается на 23. Итак, оставшиеся x обозначают цифру 2, и равенство имеет вид 723=237+486. Потом складывая каждую цифру находим ответ 7+2+3=12
ответ:12
Вот как-то так.
Пошаговое объяснение:
При делении десятичных дробей делитель и делимое домножаются на 10(100,1000 и т.д.) так, что бы делитель стал целым числом, а затем выполняют деление и в частном оказывается такое кол-во чисел после запятой, которое было в делимом.
0,2:0,2=2:2=1
4,5:0,9=45:9=5
3:0,1=30:1=30
0,32:0,4=3,2:4=0,8
7,5:0,25=750:25=30
0,49:0,7=4,9:7=0,7
0,016:0,8=0,16:8=0,02
1:0,5=10:5=2
1,6:0,4=16:4=4
100:125=100,0:125=0,8
5:0,2=50:2=25
1:0,125=1000:125=8
0,6:0,1=6:1=6
4,8:0,8=48:8=6
6,4:0,8=64:8=8
0,2:0,4=2:4=2,0:4=0,5
0,6:0,5=6:5=6,0:5=1,2
0,7:0,01=70:1=70
2:0,5=20:5=4