У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14 ответ:14
Существует 11 мест, куда можно поставить четыре нуля. Поскольку нам не важно, в каком порядке располагать нули, общее число их расстановки равно 11*10*9*8/4*3*2*1=330.
Осталось 8 мест (включая первое, где нуль стоять не может). Существует расположить на них две единицы. После этого можно расположить двойку. Останется 5 мест, на которых можно расположить 3 тройки. После этого для пятерок останется только два места, т.е. их можно будет расположить
Всего получаем 330*28*6*5*10*1=2772000 различных чисел.
1 м = 10 дм
810 дм = 81 м
81 : 9 = 9 заготовок