Каждая сторона треугольника меньше суммы двух других сторон. ( Доказательство можете посмотреть в учебнике или найти в сети.)
Следовательно, третья сторона не может быть равна или больше 7+16, т.е. она меньше 23 см.
Но она не может быть меньше разности двух других сторон ( 16-7), так как в противном случае сторона длиной 16 см будет больше суммы длин третьей и первой стороны.
Т.е. третья сторона больше 9 см
Итак, 9 см < 3-я сторона< 23 см
Тело, ограниченное поверхностями x + 2y + z - 2 = 0, x = 0, y = 0, z = 0, это треугольная пирамида, образованная пересечением заданной плоскости трёхгранного угла.
Уравнение плоскости переведём в уравнение "в отрезках".
x + 2y + z = 2. Делим обе части на 2.
(x/2) + (y/1) + (z/2) = 1.
Эти отрезки - координаты вершин на осях.
Находим векторы по координатам точек:
AB = {Bx - Ax; By - Ay; Bz - Az} = {0 - 2; 1 - 0; 0 - 0} = {-2; 1; 0}
AC = {Cx - Ax; Cy - Ay; Cz - Az} = {0 - 2; 0 - 0; 2 - 0} = {-2; 0; 2}
AD = {Dx - Ax; Dy - Ay; Dz - Az} = {0 - 2; 0 - 0; 0 - 0} = {-2; 0; 0}
V = 1/6 |AB · [AC × AD]|
Найдем смешанное произведение векторов:
AB · (AC × AD) =
ABx ABy ABz
ACx ACy ACz
ADx ADy ADz
=
-2 1 0
-2 0 2
-2 0 0
= (-2)·0·0 + 1·2·(-2) + 0·(-2)·0 - 0·0·(-2) - 1·(-2)·0 - (-2)·2·0 = 0 - 4 + 0 - 0 - 0 - 0 = = -4
Найдем объем пирамиды:
V = 1/6 · 4 = 2/ 3
1) график SIN(x)
2) Перевернули = - sin(x)
3) π/6 = 180/6 = 30°- сдвинули НАЛЕВО
4) Подняли по оси У вверх на + 2.
Дополнительно.
Удобные точки для построения графика синуса.
При Х=0 и 180 Y= 0
При Х= 90 и 270 Y= +/- 1
X = 30,120 - Y = 0,5
X = 60, 150 - Y ≈ 0.8