Обозначим сторону маленького квадрата за х. Тогда площадь основания коробки будет равна S=(a-2x)^2, а объем коробки будет равен V=(a-2x)^2*x=a^2*x-4*a*x^2+4*x^3. Для нахождения максимума объема продифференцируем эту функцию по x, получим 12*x^2-8*a*x+a^2. Приравняем производную нулю и решим полученное уравнение относительно x: x1,2=(8a+/-sqrt(64a^2-48a^2))/24=(8a+/-4a)/24 x1=1/6*a x2=1/2*a Очевидно, что при x=1/2*объем коробки равен 0, и равенство производной нулю в этой точке указывает на минимум функции объема (при изменении х от 0 до 1/2*a).. А x=1/6*a является точкой максимума функции объема. ответ: сторона вырезаемого по углам квадрата должна быть равна 1/6 части стороны исходного квадрата.
Расстояние от вершины треугольника до противолежащей стороны (высота) находят как произведение боковой стороны на синус прилежащего к стороне и основанию угла О - вершина трех треугольников здесь и дальше подразумеваем что высота опущена из точки О высота треугольника АВО h1 = ОВ*sin(угол АВО) высота треугольника ВСО h2 = ОВ*sin(угол СВО) так как ВО - биссектриса угол АВО = угол СВО значит h2 = ОВ*sin(АВО) = h1 заметим, что h2 = CО *sin(угол ВСО) высота треугольника СДО h3 = СО*sin(угол ДСО) так как СО - биссектриса угол ВСО = угол ДСО значит h3 = СО*sin(угол ВСО) = h2 мы получили h1 = h2 = h3 - доказано !
4(1/6)×((11/2)-(3/5))+((3/4)+(5/6))×6=13(1/4)=13,25
1) 1(1/2)-(3/5)=(3/2)-(3/5)=(3×5-3×2)/10=(15-6)/10=9/10
2) (3/4)+(5/6)=(3×3+5×2)/12=(9+10)/12=19/12
3) (9/10)×4(1/6)=9/10×25/6=(3×3×5×5)/(2×5×3×2)=15/4
4) 19/12×6=114/12
5) 15/4+114/12=(15×3+114)/12=(45+114)/12=(159/12)=13(3/12)=13(1/4)=13,25