Диагонали ромбы пересекаются под прямым углом.прямоугольный треуг,. образующийся при таком пересечении (их четыре равных получается), имеет гипотенузой сторону ромба, катетами - половинки от диагоналей
Мы знаем гипотенузу, ее длина 5, один катет - он половина от диагонали 6/2 = 3
найдем второй катет, он же половина второй диагонали:
корень из (25-9) = 4
значит, вторая диагональ 4*2 = 8
площадь ромба равна половине произведения диагоналей
находим
6*8/2 = 24
ответ: площадь этого ромба 24 квадратных единицы измерения
Пошаговое объяснение:
Формула объема шарового слоя:
V = (1/2)*π*H(R²+r²+H²/3), где H - высота шарового слоя, R и r - радиусы оснований шарового слоя. В нашем случае шаровой слой расположен по одну сторону от центра шара. Найдем высоту слоя. Она равна разности расстояний от центра шара до плоскостей оснований. Расстояние до дальней плоскости найдем из прямоугольного треугольника с гипотенузой - радиус шара = 5 см и одним из катетов - радиус основания = 3 см. Треугольник Пифагоров (отношение сторон 3:4:5), значит расстояние до дальней плоскости равно h1= 4см. Точно так же найдем расстояние до ближней к центру шара плоскости (основания слоя) h2 = 3см. (из Пифагорова треугольника с гипотенузой 5см и катетом 4см). Разность расстояний - высота слоя =4-3 = 1 см.
Тогда по формуле имеем:
V=(1/2)*π*1*(16+9+1/3) = π*(76)/6 = (12и2/3
Подробнее - на -
а) 200a.e= 29 919 574 140 км
б) 12 парсек= 39.1392 световых лет= 378 429 218 903 232 км
в) 500 000 000 км
г) 5 световых лет= 47 303 652 362 904 км
ВАГБ