Объяснение:
Вираз {\displaystyle 0^{0}}{\displaystyle 0^{0}} (нуль в нульовому степені) багато підручників вважають невизначеним і позбавленим сенсу[1]. Пов'язано це з тим, що функція двох змінних {\displaystyle f(x,y)=x^{y}}{\displaystyle f(x,y)=x^{y}} в точці {\displaystyle (0,0)}{\displaystyle (0,0)} має неусувний розрив. Справді, уздовж додатного напрямку осі {\displaystyle X,}{\displaystyle X,} де {\displaystyle y=0,}{\displaystyle y=0,} вона дорівнює одиниці, а вздовж додатного напрямку осі {\displaystyle Y,}{\displaystyle Y,} де {\displaystyle x=0,}{\displaystyle x=0,} вона дорівнює нулю. Тому ніяка домовленість про значення {\displaystyle 0^{0}}{\displaystyle 0^{0}} не може дати неперервну в нулі функцію.
Деякі автори пропонують домовитись про те, що цей вираз дорівнює 1.
Объяснение:
Мы знаем, что число n в степени а/b= Корень с показателем а из числа n в степени b
Давайте переведём корень из пяти в 5 в степени 1/6
Теперь действуем по правилу деления степеней- из показателя делимого вычитаем показатели делителя
То есть 1/3-1/6=2/6-1/6=1/6, значит мы поделили 5 в 1/3 на 5 в 1/6 и от первого числа осталось 5 в 1/6
Получается в скобках у нас останется только 5 в 1/2 * 5 в 1/6
По правилу умножения степеней, чтобы умножить числа с одинаковым основанием нужно сложить из показатели: складываемся 1/2 с 1/6=>3/6+1/6=4/6=2/3
Получаем 5 в 2/3
Чтобы возвести степень в степень умножаем показатели, получается нужно 2/3 умножить на три, проучится 2, то есть все это равно 5^2, что равно 25