Для вычисления промежутков знакопостоянства сперва приравняем нашу функцию к нолю и решим полученное квадратное уравнение, то есть
Теперь необходимо нарисовать ось абсцисс (0х) и на ней отобразить полученные точки, то есть мы получим 3 интервала, такие как 1. (- беск; -3) 2. [-3;4] 3.(4; беск) Определим знак функции на каждом интервале 1. (- беск; -3): у(-5)=-(-5)^2+(-5)+12=-25-5+12=-30+12=-18 <0 2. [-3;4] y(0)=0^2+0+12=0+0+12=12 >0 3.(4; беск) y(5)=-(5)^2+5+12=-25+17=-8 <0 И так мы видим что на интервале (- беск; -3)и(4; беск) функцию имеет отрицательный знак,а на интервале [-3; 4] соответственно положительный. ответ: х Є (- беск; -3) и(4; беск) отрицательные значения, х Є [-3; 4] положительные значения
Пусть скорость течения воды по подающей трубе = х а скорость течения по отводящей трубе - у Тогда время наполнения = 1/х часов, а время "опорожнения" = 1/у часов. Зная, что через первую трубу бассейн наполняется на 2 часа больше, чем через вторую опорожняется и что при заполненном на одну треть (1\3) бассейне, оноказался пустым спустя 8 часов, составим систему уравнений:
1/х = 1/у + 2 |*ху 1/3 + 8х - 8у = 0 |*3
у - х - 2ху = 0 1 + 24х - 24у = 0
выразим из второго уравнения х: 24х = 24у - 1 х = у - 1/24
подставим в первое уравнение: у - (у-1/24) - 2у(у - 1/24) = 0 у - у + 1/24 - 2у^2 + 1/14у = 0 |*24 48у^2 - 2у - 1 = 0 у1 = 1/6 у2 = - 12/96 (не удовл. усл. задачи)
х = у - 1/24 х = 1/8
время наполнения - 1/х = 1/(1/8) = 8 часов время опустошения - 1/у = 1/(1/6) = 6 часов
a + b = -8
Объяснение:
1 уравнение
x^3 - 4x^2 - x - a = 0
2 уравнение
x^2 - x - b = 0
Если они имеют 2 общих корня, то 2 уравнение имеет 2 корня.
D = 1^2 - 4(-b) = 4b + 1
x1 = (1 - √(4b+1))/2
x2 = (1 + √(4b+1))/2
И оба этих корня должны подходить к 1 уравнению.
Подставляем x1 и x2, получаем систему
{ (1 - √(4b+1))^3/8 - 4*(1 - √(4b+1))^2/4 - (1 - √(4b+1))/2 - a = 0
{ (1 + √(4b+1))^3/8 - 4*(1 + √(4b+1))^2/4 - (1 + √(4b+1))/2 - a = 0
Раскрываем скобки
{ (1-3√(4b+1)+3(4b+1)-(4b+1)√(4b+1))/8-(1-2√(4b+1)+(4b+1))-1/2+√(4b+1)/2-a=0
{ (1+3√(4b+1)+3(4b+1)+(4b+1)√(4b+1))/8-(1+2√(4b+1)+(4b+1))-1/2-√(4b+1)/2-a=0
После нескольких тождественных преобразований получаем:
{ -5b/2 - 2 - b√(4b+1)/2 + 2√(4b+1) - a = 0
{ -5b/2 - 2 + b√(4b+1)/2 - 2√(4b+1) - a = 0
Складываем уравнения
-5b/2 - 2 - b√(4b+1)/2 + 2√(4b+1) - a - 5b/2 - 2 + b√(4b+1)/2 - 2√(4b+1) - a = 0
-5b - 4 - 2a = 0
a = -5b/2 - 2
Подставляем в любое уравнение
-5b/2 - 2 - b√(4b+1)/2 + 2√(4b+1) + 5b/2 + 2 = 0
- b√(4b+1)/2 + 2√(4b+1) = 0
b = 4
a = -5*4/2 - 2 = -10 - 2 = -12
Сумма a + b = 4 - 12 = -8