-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
Скорее всего здесь речь идет об убывающей геометрической прогрессии...
для убывающей геометрической прогрессии Sn -> b1 / (1-q)
b1 / (1-q) = 3/4 ___ 4b1 = 3(1-q)
и сумма кубов тоже будет убывающей... => Sn3 -> (b1)^3 / (1-q^3)
(b1)^3 / (1-q^3) = 27/208
27(1-q)^3 / (64(1-q^3)) = 27/208
(1-q)^3 / ((1-q)(1+q+q^2)) = 4/13
(1-q)^2 / (1+q+q^2) = 4/13
13(1-2q+q^2) = 4(1+q+q^2)
13-26q+13q^2 - 4-4q-4q^2 = 0
3q^2 - 10q + 3 = 0
D = 100 - 4*9 = 64
q1 = (10 + 8)/6 = 3 ___ q2 = (10 - 8)/6 = 1/3
b1 = 1/2
Сумма квадратов членов прогрессии = (b1)^2 / (1-q^2) = 1/4 : 8/9 = 1/4 * 9/8 = 9/32