• Решение:
— Чтобы узнать, возрастает или убывает функция y=6-3x, нужно использовать вот такие правила:
• 1. Смотрим на то, что стоит перед функцией ( знак «+» или «-» ) .
• 2. Мы увидели, какой знак стоит перед функцией. Это знак «-». Теперь, переходим к следующему пункту нашего правила.
• 3. Теперь, чтобы нам легче узнать, возрастающая или убывающая эта функция, возьмём пример с возрастающей функцией и убывающей. Например: y=6x-2. В данном случае функция возрастающая, т.к. перед «x» подразумевается знак «+». А вот возьмём ещё один пример, только с убывающей функцией: -x+1. Перед «х» стоит знак «-», значит, функция убывающая
• 4. Ну, а теперь, по примеру, будем определять: возрастает или убывает функция y=6-3x .
• 5. y=6-3x. Мы видим, то что перед «х» стоит знак «-», значит, функция убывающая.
• ответ:
Функция y=6-3x убывает.
— Фу-у-ух, как же я это долго писала! Надеюсь, я Вам и остальным участникам! Удачи! :³
2) приравниваем её к нулю и решаем получившееся уравнение
3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2
3) Из найденных корней в указанный промежуток попало х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
minf(x) = f(-4) = -24