М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Stasikone
Stasikone
02.01.2020 09:49 •  Алгебра

решить уравнение, Решать из школьной программы.

👇
Открыть все ответы
Ответ:
steamoff
steamoff
02.01.2020

1) Число корней квадратного уравнения можно определить при дискриминанта. Если D=0, то уравнение имеет один корень, если D>0, то уравнение имеет два корня, если D<0, то уравнение действительных корней не имеет.

а) 9х²+12х+4=0

D = 12²-4*9*4 = 144-144 = 0 = 0 ⇒ уравнение имеет один корень.

б) 2х²+3х-11=0

D = 3²-4*4*(-11) = 9+176 = 185 > 0 ⇒ уравнение имеет два корня.

2) а) х²-14+33=0

Уравнение приведенное, проще всего использовать теорему Виета.

х₁*х₂=33

х₁+х₂=14

Отсюда х₁=11, х₂=3

ответ: х₁=11, х₂=3

б) -3х²+10х-3=0

D = 10²-4*(-3)*(-3) = 100-36 = 64

x_1=\frac{-10+8}{2*(-3)}=\frac{-2}{-6}=\frac{1}{3}\\ \\x_2=\frac{-10-8}{2*(-3)}=\frac{-18}{-6}=3

ответ: х₁=1/3, х₂=3

в) х⁴-10х²+9=0

Биквадратное уравнение решим при замены.

х²=t

t²-10t+9=0

По теореме Виета:

t₁*t₂=9

t₁+t₂=10

t₁=9, t₂=1

Производим обратную замену.

х²=9 ⇒ х = ±√9 ⇒ х=±3

х²=1 ⇒ х = ±√1 ⇒ х=±1

ответ: х₁,₂ = ±3, х₃,₄ = ±1.

г) х²+10+22=0

D = 10²-4*1*22 = 100-88 = 12

x_1=\frac{-10+\sqrt{12}}{2}= \frac{-10+2\sqrt{3}}{2}=\frac{-10}{2}+\frac{2\sqrt{3}}{2}=-5+\sqrt{3}\\ \\ x_1=\frac{-10-2\sqrt{3}}{2}=\frac{-10}{2}-\frac{2\sqrt{3}}{2}=-5-\sqrt{3}

ответ: х₁=-5+√3, х₂=-5-√3

д) х²-110х+216=0

По теореме Виета:

х₁*х₂=216

х₁+х₂=110

х₁ = 108, х₂ = 2

ответ: х₁ = 108, х₂ = 2

3) Пусть одна сторона прямоугольника равна х см. Вторая сторона на 9 см больше первой, поэтому она равна (х+9) см. Площадь прямоугольника 112 см² (по условию). Она находится как произведение смежных сторон прямоугольника.

Составляем уравнение.

х*(х+9) = 112

х²+9х-112 = 0

D = 9²+4*1*112 = 81+448 = 529

x_1=\frac{-9+23}{2}=7\\ \\x_2=\frac{-9-23}{2}=-16

Длина отрицательной быть не может, поэтому нам подходит только один корень: 7

Длина одной стороны прямоугольника 7 см.

Длина второй стороны прямоугольника х+9=7+9=16 см.

ответ: 7 см, 16 см.

4)

\frac{10}{25-x^2}-\frac{1}{5+x}-\frac{x}{x-5}=0\\\\\frac{10}{(5-x)(5+x)}-\frac{1}{5+x}-\frac{x}{-(5-x)}=0\\\\\frac{10}{(5-x)(5+x)}-\frac{1^{(5-x}}{5+x}+\frac{x^{(5+x}}{5-x}=0\\\\\frac{10-(5-x)+x(5+x)}{(5-x)(5+x)} =0\\\\\frac{10-5+x+5x+x^2}{(5-x)(5+x)} =0\\\\\frac{x^2+6x+5}{(5-x)(5+x)} =0

ОДЗ: (5-х)(5+х)≠0 ⇒ х≠5, х≠-5.

х²+6х+5=0

По теореме Виета:

х₁*х₂=5

х₁+х₂=-6

х₁ = 5, х₂ = 1

х₁ = 5 - не удовлетворяет ОДЗ.

ответ: х=1

5) 4х²+рх+9=0

Квадратное уравнение имеет один корень, если дискриминант равен нулю. Найдем дискриминант и приравняем его к нулю. Затем решим получившееся уравнение и тем самым найдем значения р.

D = р²-4*4*9 = р²-144

р²-144 = 0

р²=144

р = ±√144

р= ±12

ответ: р= ±12

4,6(84 оценок)
Ответ:
Ксюника1
Ксюника1
02.01.2020
 а) (а – 2)( а + 2) – 2а(5 – а) =а^2-4-10a+2a^2=6a^2-10a-4
 б) (у – 9)2 – 3у(у + 1) =y^2-18y+81-3y^2-3y=-2y^2-21y+81
 в) 3(х – 4) 2 – 3х2 =3(x^2-8x+16)-3x^2=3x^2-24x+48-3x^2=48-24x
2. Разложите на множители:
 а) 25х – х3=x(25-x^2)=x(5-x)(5+x) б) 2х2 – 20х + 50 =2(x^2-10x+25)=2(x-5)^2=2(x-5)(x+5)
 3. Найдите значение выражения а2 – 4bс=36-4*(-11)*(-10)=36-440=-404
 а) 452 б) -202 в) -404 г) 476 
4. Упростите выражение:
 (с2 – b)2 – (с2 - 1)(с2 + 1) + 2bс2 =c^4-4bc^2+b^2-c^4+1=-4bc^2+b^2+1
5. Докажите тождество:
(а + b)2 – (а – b)2 = 4аba^2+2ab+b^2-a^2+2ab-b^2=2a+2ab=4ab 
4,5(80 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ