В решении.
Объяснение:
Если сторону квадрата уменьшить на 4 дм, то получится квадрат, площадь которого на 72 дм² меньше площади данного. Найдите исходную сторону квадрата.
х - исходная сторона квадрата.
х - 4 - уменьшенная сторона квадрата.
х² - площадь исходного квадрата.
(х - 4)² - площадь уменьшенного квадрата.
По условию задачи уравнение:
х² - (х - 4)² = 72
х² - (х² - 8х + 16) = 72
х² - х² + 8х - 16 = 72
8х = 72 + 16
8х = 88
х = 11 (дм) - исходная сторона квадрата.
Проверка:
11² - (11 - 4)² = 11² - 7² = 121 - 49 = 72 (дм)², верно.
Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру уравнение в действительных корнях.
Рассмотрим функцию . Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию . Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.
ответ: b=6,1.
Объяснение:
y=-1,3*x+b (-3;10)
10=-1,3*(-3)+b
10=3,9+b
b=6,1.