2. а) у=1 при х=0 следовательно у=1 точка пересечения с осью ординат
и) у=2 при х=0 следовательно у=2 точка пересечения с осью ординат
для построения прямых вычислим еще точка пересечения с осью обсцисс:
а) х=1 при у=0 и) х=4 при у=0
выполняем построение. рисуем оси, ставим направления и выбираем единичные отрезки:
| Y
|
|
|
|
| 2
|
| 1
|
0xx> X
| 1 4
|
теперь аккуратно соединим точку 1 на оси ОУ и точку 1 на оси ОХ - это прямая а). Также аккуратно соединим точку 2 на оси ОУ и точку 4 на оси ОХ - это прямая и)
Y = x^2 + 4x = 2 Здесь Все под один знак равно: y = x^2 + 4x - 2 Тогда графиком данной функции будет являться парабола! Приравниваем к 0 правую часть функции: x^2 + 4x - 2 = 0 Находим 2 точки параболы: m и n m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2 n = 4 -8 -2 = -6 Получились 2 точки: A (-2;0) и B (-6;0); Далее находим центральную точку нашей параболы путем нахождения дискриминанта: D = (b/2)^2 - ac. ("/"-дробная черта) D = 4 - 1 (-2) D = 6 Это примернооо 2,4 квадратный корень. x1/2 = -b/2 +- корень из D и все разделить на a. x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4 Дальше надо начертить систему координат, и расставить эти точки: A (-2;0); B (-6;0); C (-4,4; 0,4);
1. а) у=х-1 к=1 l=-1
и) у= -0,5*х+2 k=-0.5 l=2
2. а) у=1 при х=0 следовательно у=1 точка пересечения с осью ординат
и) у=2 при х=0 следовательно у=2 точка пересечения с осью ординат
для построения прямых вычислим еще точка пересечения с осью обсцисс:
а) х=1 при у=0 и) х=4 при у=0
выполняем построение. рисуем оси, ставим направления и выбираем единичные отрезки:
| Y
|
|
|
|
| 2
|
| 1
|
0xx> X
| 1 4
|
теперь аккуратно соединим точку 1 на оси ОУ и точку 1 на оси ОХ - это прямая а). Также аккуратно соединим точку 2 на оси ОУ и точку 4 на оси ОХ - это прямая и)