Пусть второй кран опорожнит полную ванну pf Х мин.
А Р (1/мин) t (мин)
2 кран 1 - 1/X Х
1 кран 1 1/(X+2) X +2
1 + 2 -1 1/(X+2) - 1/X 60 вместе
Последняя строка таблицы говорит о том что ванна полностью опорожнилась за 60 минут, т.е. 1/(х+2)-1/х*60 = -1 (х-х-2)/((х(х+2))*60 = -1 -2/(х*(х+2))=-1/60 Х*(х+2) = 120 х^2+2х-120 = 0 В = 4-4*(-120) = 484(22) х1 = (-2+22)/2 = 10 х2<0
ОТВЕТ: второй кран опорожнит полную ванну за 10 минут.
Далее: Таким образом, получаем уравнение: Теперь понятно, что можно ввести замену и продолжать решение уже дробно-рационального уравнения.
Советую запомнить приём, который я здесь употребил. Он состоит вот в чём. Мы помним формулу сокращённого умножения: Отсюда я могу легко выразить сумму квадратов: Думаю, Вы уже догадались, что в нашем уравнении сыграло роль x, а что y. Этот приём встречается очень часто в самых неожиданных ситуациях, так что рекомендую запомнить его. Уравнение можно было решить и по формулам понижения степени(правда, это значительно было бы сложнее). Но в целом, можно рассмотреть и такой вариант, но я показал проще.
Делаем замену: После замены получаем: Умножаем обе части уравнения на 8t(с дробями работать крайне неудобно, да и t в знаменателе нам ни к чему - просто запомним, что он должен быть отличным от 0, а потом проверим это): Решаем квадратное уравнение(кстати, t уже отличен от 0. В этом можно убедиться прямой подстановкой) - этот корень не удовлетворяет нашему уравнению. Следовательно, возвращаясь к переменной x, получаем простейшее уравнение: Отсюда Это и есть ответ. Напомню, что при решении простейшего уравнения я использовал формулу понижения степени, а в конечном результате n - целое число.
А Р (1/мин) t (мин)
2 кран 1 - 1/X Х
1 кран 1 1/(X+2) X +2
1 + 2 -1 1/(X+2) - 1/X 60
вместе
Последняя строка таблицы говорит о том что ванна полностью опорожнилась за 60 минут, т.е.
1/(х+2)-1/х*60 = -1
(х-х-2)/((х(х+2))*60 = -1
-2/(х*(х+2))=-1/60
Х*(х+2) = 120
х^2+2х-120 = 0
В = 4-4*(-120) = 484(22)
х1 = (-2+22)/2 = 10
х2<0
ОТВЕТ: второй кран опорожнит полную ванну за 10 минут.