Вспомним свойство что медианы точкой пересечения делиться как 2:1 считая от вершины,то есть: AO/ON=2 ; CO/OM=2 Откуда: AO=2*18/3=12 CO=2*24/3=16. Заметим, что треугольник AOC подобен египетскому прямоугольному треугольнику со сторонами 3,4,5 с коэффициентом подобия 4. Значит его площадь: S(AOC)=12*16/2=96. Тк треугольники AOC и AMC имеют общую высоту,то их площади относятся как основания,то есть: S(AMC)/S(AOC)=MC/OC=3/2 S(AMC)=3/2 *S(AOC). Треугольники ABC и AMC тоже имеют одну высоту,поэтому: S(ABC)/S(AMC)=AB/AM=2 S(ABC)=2*S(AMC)=3*S(AOC)=3*96= =288 см^2. Вообще говоря известный факт ,что три медианы делят площадь треугольника на 3. Тк точка пересечения медиан его центр тяжести.
3x+2y-6=0 чтобы найти точку пересечения с осью абсцисс, нужно y приравнять к нулю в уравнении и выразить х, -3х+2*0-6=0 х=-2 значит точка пересечения с осью абсцисс (ох) это точка (-2,0) чтобы найти точку пересеч. с осью ординат нужно х приравнять к нулю и найти у -3*0+2y-6=0 y=3 значит точка пересечения с оу точка (0,3) если точка к принадлежит графику, значит при подстановки туда координат точки к мы получим тождество, т.е. первую координату точки к ставим вместо х, а вторую координату вместо у -3*1/3 +2*3,5-6=0 получили тожедство 0=0, значит точка принадлежит.