1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.
1) Уравнение прямой, проходящей через 2 точки: (х-х1)/(х2-х1) = (у-у1)/(у2-у1). а)Координаты заданных точек: Точка А Точка В Точка С Точка Д: -5 6 7 2 5 1 -4 4 Уравнение искомой прямой АВ у = 3 х -3 Уравнение искомой прямой СД у = 3 х -1.5 б) Координаты заданных точек Точка В Точка С Точка А Точка Д : 7 2 5 1 -5 6 -4 4 Уравнение искомой прямой ВС у = -2 х + 12 Уравнение искомой прямой АД у = 1 х + 2.25 У параллельных прямых коэффициенты перед х равны: в задании а) - равны, б) - нет.
2) Сначала находим точку пересечения первых двух прямых: (1/2)x-2 =-2x-12 2,5х = -10 х = -10 / 2,4 = -4 у = 0,5*(-4) - 2 = -4. Эта точка должна удовлетворять уравнению третьей прямой: -4 = к*(-4) к = 1.
При пересечении прямой оси ОХ у=0
-3+4х=0
4х=3
х=3/4
ответ: (3/4; 0).