1) - две критические точки в области определения R. на промежутках и на промежутке , значит функция убывает на промежутках и возрастает на промежутке . - точка минимума, - точка максимума. - значение минимума функции, - значение максимума функции. 2) - корней нет, - корней нет. итак, критических точек нет, значит в области определения R функция монотонна, т к при любых х, то функция возрастает в области определения R. 3) т к касательная параллельна прямой у=х-3, то угловой коэффициент касательной k=1.
- точки, в которых касательная параллельна прямой у=х-3.
Это 2 прямые, первая с наклоном У:Х=0,5:1 сдвинута по оси У на 0,5 вниз (при Х=0 У=-0,5), а вторая с наклоном У:Х=1:1 сдвинута по оси У на 4 вниз (при Х=0 У=-4).
Точка пересечения имеет координаты (7;3), значит, корнем является Х=7.
2) Приводим систему к виду У=-1/3Х+2 и У=-1/3Х+3.
Это 2 прямые, первая с наклоном У:Х=1/3:1 сдвинута по оси У на 2 вверх (при Х=0 У=2), а вторая с наклоном У:Х=1/3:1 сдвинута по оси У на 3 вверх (при Х=0 У=3).
Имеем 2 параллельные прямые (наклон ведь одинаков), которые не пересекаются -> у системы нет решения.
Объяснение:
Другий приклад вставлю фото з поясненям
Третій приклад теж скину фото позначу зірочкою