V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
Нам дана 4-угольная пирамида, у которой все ребра равны. Значит, в основании у нее лежит квадрат. Пусть сторона квадрата равна а. Радиус круга, в который вписан квадрат, равен R = a/√2 = a√2/2 Боковые ребра пирамиды тоже равны а. Найдем ее высоту. Отрезок ОА от центра основания до угла равен радиусу, R = a/√2. OAS - это прямоугольный треугольник, AS = a; OA = a/√2. OS = H = √(AS^2 - OA^2) = √(a^2 - a^2/2) = √(a^2/2) = a/√2 = R Высота пирамиды равна радиусу описанной окружности ее основания. Это и означает, что этот радиус и есть радиус шара. То есть центр основания совпадает с центром шара.
думаю так . мой ответ думаю