Задания 1. На рисунке 1 показан график функции y=f(x) n Рисунок 1 (і) а) Запишите область определения функции; b) определите четность функции; с) определите максимальное значение функции на области определения; d) определите минимальное значение функции на промежутке (-1,5; 1). (ii) Для функции y=f(x) в задании 11) постройте график функции y=0,5f(x-1)+2.
300 л в минуту или 300·60=18 000 л в час наполняет 1 труба
Пусть вторая наполняет х л в час,третья у л в час.
Пусть сначала первая труба проработала t часов, а вторая и третья вместе в два раза больше, т.е 2 t часов 18 000·t + 2t·(x+y)=500 000 12,5(x+y)=18 000t
Выражаем (х+у) из второго уравнения (x+y)=18 000·t/12,5 и подставляем в первое:
18 000 t + 2t·1 440t=500 00 или 36t²+225t-6250=0 a=36, b=225, c=-6250
D=b²-4ac=225²+4·36·6250=950625=975² t₁=(-225-975)/2<0 t₂=(-225+975)/72=750/72=10 целых 30/72 часа= =10 целых 5/12= 10 целых 25/60=10 часов 25 минут
Янадеюсь ты смог нарисовать рисунок , если нет , то напиши к комментариях , я добавлю . посмотрим на треугольник abo . он равнобедренный , значит углы у основания равны (180-60)/2 = 60 . теперь посмотрим на треуг abd . его угол bda = 180 - 60-90 = 30 . теперь вспомним : катет лежащий напротив угла в 30 гр равен половине гипотенузы . гипотенуза - bd = 2*ab= 34 аналогично с другой стороной если что-то осталось непонятным , то напишите , , автору в личные сообщения , чтобы он исправил решение . powered by plotofox.
1 куб дм = 1 л
300 л в минуту или 300·60=18 000 л в час наполняет 1 труба
Пусть вторая наполняет х л в час,третья у л в час.
Пусть сначала первая труба проработала t часов, а вторая и третья вместе в два раза больше, т.е 2 t часов
18 000·t + 2t·(x+y)=500 000
12,5(x+y)=18 000t
Выражаем (х+у) из второго уравнения (x+y)=18 000·t/12,5
и подставляем в первое:
18 000 t + 2t·1 440t=500 00
или
36t²+225t-6250=0
a=36, b=225, c=-6250
D=b²-4ac=225²+4·36·6250=950625=975²
t₁=(-225-975)/2<0
t₂=(-225+975)/72=750/72=10 целых 30/72 часа=
=10 целых 5/12= 10 целых 25/60=10 часов 25 минут
ответ. Первая труба работала10 часов 25 минут