Задача : Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.
Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи: 1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра). 2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр). 3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2).
Всего получаем P=1/10+1/10+1/10=3/10=0,3P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места.
Решение: x^3 +x-2=0 Это уравнение разложим на множители. Для этого в левой части уравнения отнимем х^2 и прибавим х^2 а также -2 представим как (-1-1) x^3 -x^2 +x^2 -1+x-1=0 (x^3 -x^2)+(x^2-1) + (x-1)=0 x^2(x-1) +[(x-1)(x+1)] +1*(x-1)=0 (x-1)(x^2 +x+1+1)=0 (x-1)(x^2+x+2)=0 (x-1)=0 x-1=0 x=1 (x^2+x+2)=0 x^2+x+2=0 x1,2=(-1+-D)/2*1 D=√(1-4*1*2)=√(1-8)=√-7 - дискриминант отрицательный: из отрицательного числа квадратный корень не извлекается , в данном случае уравнение не имеет корней
ответ: Уравнение имеет единственный корень-это целое число х=1
Задача : Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.
Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи:
1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра).
2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр).
3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2).
Всего получаем P=1/10+1/10+1/10=3/10=0,3P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места.
ответ: 0,3