М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bmorextreme
bmorextreme
29.03.2022 19:56 •  Алгебра

Решить и, желательно, с объяснением: 5sinx+cosx=5

👇
Ответ:
akakkakksksak
akakkakksksak
29.03.2022

Заменим cosX=кореньиз(1-sin(^2)X)

Значит, уравнение принимает вид:

кореньиз(1-sin(^2)X) =5-5sinX

Возводим обе части в квадрат:

1-  sin(^2)X=25-50sinX+25sin(^2)X 

26sin(^2)X  - 50sinX+24=0

13sin(^2)X  - 25sinX+12=0

Пусть sinX=t, |t|<=1

13t^2  - 25t+12=0\

D=625-624=1

t1=(25+1)/26 =1, 

t2=(25-1)/26=12/13

Вернемся к исходной переменной

sinX=1 или  sinX=12/13

x=П/2+ 2Пк, к принадлежит Z

Х=(-1)^k*arcsin(12/13)+Пк, к принадлежит Z

ответ:  П/2+ 2Пк,(-1)^k*arcsin(12/13)+Пк, к принадлежит Z 

 

4,5(78 оценок)
Ответ:
gnastena021
gnastena021
29.03.2022

5sinX+cosX=5,

Заменим sinx ,cosx через tg(x/2).

10tg^2(x/2)/(1+tg^2(x/2))+(1-tg^2(x/2))/(1+tg^2(x/2))=5. Заменим tg(x/2)=y.

10y+1-y^2=5+5y^2, 1+y^2yне равно 0.

6y^2-10y+4=0,

3y^2-5у+2=0,D=1>0

y=1, tg(x/2)=1, x/2=пи/4+пи*n,n принадл. Z, x=пи/2+2пи*n,n принадл. Z

y=2/3, tg(x/2)=2/3, x/2=arctg(2/3)+пик, к принадл. Z, x=2arctg(2/3)+2пи*к, к принадл. Z

4,4(72 оценок)
Открыть все ответы
Ответ:
serduk352
serduk352
29.03.2022

Подобно звёздам на небосводе сияют в числовом космосе простые числа. Не одну тысячу лет к ним приковано внимание математиков – их вновь и вновь ищут, исследуют, находят им применение. Евклид и Эратосфен, Эйлер и Гаусс, Рамануджан и Харди, Чебышёв и Виноградов... Этот перечень выдающихся учёных занимавшихся простыми числами и задачами с ними связанными можно продолжать и продолжать.

На страницах нашего сайта уже шла речь о бесконечности ряда простых чисел и некоторых смежных вопросах. При этом нас интересовали все простые числа сразу. Иногда же интересно рассмотреть совокупности из двух, трёх, четырёх или более простых чисел. Именно о таких совокупностях – созвездиях простых чисел – пойдёт речь далее. 

Простые числа-близнецы

Два простых числа, которые отличаются на 2, как

5  и  7,

11  и  13,

17  и  19,

получили образное название близнецы (эти числа называют ещё парными простыми числами). Любопытно, что в натуральном ряду имеется даже тройня простых чисел – это числа

3,  5,  7.

Ну а сколько всего существует близнецов – современной математике неизвестно.

Числа-близнецы из заданной таблицы чисел можно просеивать, слегка подправив решето Эратосфена. Если для каждого вычеркнутого Эратосфена числа n вычеркнуть так же число n – 2, то в таблице останутся лишь такие числа р, для которых число р + 2 тоже простое. В пределах первой сотни близнецы – это следующие пары чисел:

3  и  5,

5  и  7,

11  и  13,

17  и  19,

29  и  31,

41  и  43,

59  и  61,

71  и  73.

С парами близнецов в пределах 10000 можно познакомиться на страницах нашего сайта в Таблице простых и парных простых чисел, не превосходящих 10000, где они выделены красным цветом.

Вот лишь некоторые свойства этих чисел, которых лежат на самой поверхности океана простых чисел:

все пары простых близнецов, кроме 3 и 5, имеют вид 6n ± 1;при делении на 30 все пары близнецов, кроме первых двух, дают следующие пары остатков:

11  и  13,

17  и  19,

29  и  1;

по мере удаления от нуля близнецов становится всё меньше и меньше. Так, в пределах первой сотни натуральных чисел существуют восемь пар близнецов, а в пределах пяти сотен с 9501 по 10000 – шесть.

Предполагается, что пар простых чисел-близнецов бесконечно много, но это не доказано. Исследования, проводимые в "глубоком числовом космосе", продолжают выявлять эти замечательные и загадочные пары. На данный момент рекордсменами считаются близнецы

3756801695685 · 2666669 ± 1,

которые были обнаружены 24 декабря 2011 года в рамках реализации проекта PrimeGrid. Для записи каждого из этих чисел понадобиться 200700 цифр. 

 

Простые числа-триплеты

Это тройка различных простых чисел, разность между наибольшим и наименьшим из которых минимальна. Наименьшими простыми числами, отвечающими заданному условию, являются –

2, 3, 5  и  3, 5, 7.

Данная пара триплетов исключительна, так как во всех остальных случаях разность между первым и третьим членом равна шести. Обобщённо: последовательность простых чисел

p, p+2, p+6  или  p, p+4, p+6

называется триплетом. 

Простые числа-триплеты в пределах первой сотни:

  5,  7, 11;

  7, 11, 13;

11, 13, 17;

13, 17, 19;

17, 19, 23;

37, 41, 43;

41, 43, 47;

67, 71, 73.


 


 

4,6(90 оценок)
Ответ:
Edam
Edam
29.03.2022
Пусть масса первого раствора х  г, тогда в этом растворе
х:100·4= 0,04х г соли.
Масса второго раствора (х+3496) г, в этом растворе
(х+3496):100·73=0,73(х+3496)

Масса нового раствора равна сумме масс первого и второго растворов, т.е. х+(х+3496)=2х+3496
Масса соли в нем 0,48(2х+3496) равна сумме масс соли первого и второго растворов 0,04х+0,73(х+3496).
Уравнение:
0,48·(2х + 3496) = 0,04х+0,73·(х+3496);
0,96х + 1678,08 = 0,04х + 0,73х + 2552,08;
0,96х - 0,04х - 0, 73х = 2552,08 - 1678,08;
0,19х = 874;
х = 4600.
х+3496=4600+3496=8096 г
 
О т в е т. Масса второго раствора 8096 г
4,7(31 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ