Ограничение только на неравенство нулю знаменателя:
У нас корень четной степени, а значит, ограничением является неотрицательность подкоренного выражения:
По поводу 3-его у меня сомнения в правильности записи условия:
если условие такое, как записано, то есть
, то ограничение лишь на неравенство нулю знаменателя:
В данном случае получаем:
Рассматриваем 2 случая:
То есть
Но я сильно сомневаюсь, что там не все под корнем, рассмотрим этот случай:
Чтобы решить неравенство воспользуемся методом интервалов, нули уже нашли
и
, имеем +-+ на промежутках и
Самое главное - при необходимости нужно пересчитать на те единицы измерения, которые указаны в задаче. Если задача письменная, то есть будут смотреть ход её решения и ответ, то записывать ответ с единицами измерения это как хороший тон.
Но если задача, например, на экзамене в так называемой "тестовой" части, то единицы измерения писать не надо, об этом даже будет сказано в инструкциях/пояснениях в КИМах.
Или если где-то в электронном виде решаете и вбиваете ответ в специальное поле, то там тоже (на 99.9%) не надо вбивать единицы измерения.
1.найдите угловой коэффициент касательной к графику функции F(x)в точке х0
а) F(х)= sin^2x , x0= п/12
k=f`(xo)
f`(x)=2sinxcosx=sin2x
f`(pi/12)=sin2*pi/12=sinpi/6=1/2
2.на графике функции g(x)=квадратный корень из 8х-х^2 найдите точку в которой касательная к графику параллельна оси абсцисс f`(x)=0
g`(x)=(8-2x)/2V(8x-x^2)=(4-x)/V(8x-x^2)
g`=0 4-x=0 x=4