Чтобы решить данное неравенство, сперва решим квадратное уравнение, приравняв левую часть к нолю
Теперь на оь Ох нанесем полученные точки(-1 и 4), точки закрашиваем, так как неравенство не строгое, вся ось разбивается на три интервала 1:(- беск: -1] 2.(-1;4) 3.[4; беск) + - + определим знак левой части, при представлении числа из промежутка 1:(- беск: -1] -2: 2.(-1;4) 3: : 3.[4; беск): 5: И так решением неравенства являются все значения х в указанных промежутках (- беск: -1] и.[4; беск) ответ: хЄ(- беск: -1] и.[4; беск)
Надо приравнять функцию к нулю и вычислить корни квадратного уравнения: заменив знаки на противоположные, получаем: 4n*2-12n+9=0 D=144-4*4*9=144-144=0 Дискриминант равен нулю - это значит, что у графика функции только одна точка пересечения с осью ОХ при х=12:8=1,5. Таким образом, график - парабола, ветви вниз, так как а= - 4 . При значании аргумента 1,5 функция равна нулю, при значении аргумента от минус бесконечности до 1,5 объединяя с промежутком 1,5 до плюс бесконечности функция принимает отрицательные значения. Положительные значения функция не принимает.
ответы записаны на фото: