Для первого стрелка событие А1 - одно попадание в мишень - может быть реализовано двумя событие А11 - попадание при первом выстреле и промах при втором; событие А12 - промах при первом выстреле и попадание при втором. Тогда А1=А11+А12 и Р(А1)+Р(А11)+Р(А12)=0,1*0,8+0,9*0,2=0,26.
Для второго стрелка событие А2 - одно попадание в мишень - может быть также реализовано двумя событие А21 - попадание при первом выстреле и промах при втором; событие А22 - промах при первом выстреле и попадание при втором. Тогда А2=А21+А22 и Р(А2)+Р(А21)+Р(А22)=0,1*0,8+0,9*0,2=0,26. ответ: 0,26.
Для решения нужно знать некоторые теоремы: 1) любая высота в равностороннем треугольнике является биссектрисой и медианой этого треугольника, а также серединным перпендикуляром к соответствующей стороне этого треугольника. 2) теорема Пифагора. 3) медианы любого треугольника точкой пересечения делятся в отношении 2:1 считая от вершины. Пусть сторона данного треугольника a=(V3). Проведем какую-либо высоту в данном треугольнике, эта высота является медианой, поэтому делит сторону, к которой проведена пополам. Рассмотрим один из двух прямоугольных треугольников, на которые делится исходных равносторонний треугольник проведенной высотой. Гипотенуза прямоугольного треугольника = a, один из катетов = (a/2). Найдем второй катет, который является высотой исходного треугольника. По т. Пифагора: a^2 = (a/2)^2 + h^2; h^2 = a^2 - (a/2)^2 = a^2 - (a^2/4) = (3/4)*(a^2). h = a*(V3)/2, Центр описанной окружности - это точка пересечения серединных перпендикуляров к сторонам данного треугольника. Но в равностороннем треугольнике все серединные перпендикуляры являются медианами (а также биссектрисами и высотами) этого треугольника. Поэтому длина h это длина медианы, а искомый радиус (в соответствии с теоремой 3) ) будет равен (2/3) от h. Т.е. R = (2/3)*h = (2/3)*a*(V3)/2 = (2/3)*(V3)*(V3)/2 = 1.
1 - cos 4x = 1
cos 4x = 0
, k-целое
, k-целое