М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
МашаМозг112
МашаМозг112
15.07.2022 15:56 •  Алгебра

Решите вариант если решите, а


Решите вариант если решите, а

👇
Открыть все ответы
Ответ:
tvzhanna80
tvzhanna80
15.07.2022
1
ОДЗ
{x+5>0⇒x>-5
{5x-1>0⇒x>0,2
{x-1>0⇒x>1
x∈(1;∞)
log_2(2x+10)=log_2(5x²-6x+1)         1=log_2(2)    log_a(b)+log_a(c)=log_a(bc)
2x+10=5x²-6x+1
5x²-8x-9=0
D=64+180=244
√D=2√61
x1=(8-2√61)/10∉(1;∞)
x2=(8+2√61)/10
2
4sin(x/2)cos(x/2)<-1
2sinx<-1
sinx<-1/2
x∈(7π/6+2πk;11π/6+2πk,k∈z)

0,5^[(x²-4)/x]=8
(x²-4)/x<-3  основание меньше 1,знак меняется
(x²-4)/x+3<0
(x²-4+3x)/x<0  x²+3x-4=0 по теореме Виета х=-1 и х=4
(x-1)(x+4)/x<0
x=1  x=-4  x=0
  _                  +            _               +
(-4)(0)(1)
x∈(-∞;-4) U (0;1)
3
arctg√3-arctg(-1)=π/3-(-π/4)=4π/12+3π/12=7π/12
4,4(42 оценок)
Ответ:
Alina23154784
Alina23154784
15.07.2022
1)  A(5,6,4)  ,  B(6,9,4)  ,  C(2,10,10)  .
  Уравнение плоскости, проходящей через три точки:

\left|\begin{array}{ccc}x-x_1&y-y_1&z-z_1\\x_2-x_1&y_2-y_1&z_2-z_1\\x_3-x_1&y_3-y_1&z_3-z_1\end{array}\right| =0\\\\\\\left|\begin{array}{ccc}x-5&y-6&z-4\\1&3&0\\-3&4&6\end{array}\right| =(x-5)\cdot 18-(y-6)\cdot 6+(z-4)\cdot 13=0\\\\\\18x-6y+13z-106=0

Расстояние от точки М(1,2,3) до плоскости найдём по формуле:

d=\frac{|\, Ax_0+By_0+Cz_0+D\, |}{\sqrt{A^2+B^2+C^2}}\\\\d=\frac{|18\cdot 1-6\cdot 2+13\cdot 3-106|}{\sqrt{18^2+6^2+13^2}}=\frac{|-61|}{ \sqrt{529} }=\frac{61}{23} =2 \frac{15}{23}

2)  Векторы образуют базис, если они ЛНЗ, то есть определитель, составленный из координат этих векторов отличен от 0 .

\vec{a}=(5,1,2)\; ,\; \; \vec{b}=(8,1,-3)\; ,\; \; \vec{c}=(-1,3,2)

\Delta = \left|\begin{array}{ccc}5&1&2\\8&1&-3\\-1&3&2\end{array}\right| =5(2+9)-(16-3)+2(24+1)=92\ne 0

Векторы \vec{a}\; ,\; \vec{b}\; ,\; \vec{c}  образуют базис. Значит, вектор  \vec{x}  можно разложить по данному базису.
Найдём координаты вектора   \vec{x}=(7,1,9)  в этом базисе, используя соотношение между векторами
  \vec{x}= \alpha \cdot \vec{a}+ \beta \cdot \vec{b}+\gamma \cdot \vec{c} .  
В координатной форме это  соотношение будет иметь вид:

\left\{\begin{array}{c}5 \alpha +8 \beta -\gamma=7\\ \alpha + \beta +3\gamma =1\\2 \alpha -3 \beta +2\gamma=9\end{array}\right

Решим систему методом Гаусса.

\left(\begin{array}{ccc}1&1&3\; \; |\; 1\\5&8&-1\; |\; 7\\2&-3&2\; \; |\; 9\end{array}\right) \sim \left(\begin{array}{ccc}1&1&3\; \; |\; 1\\0&3&-16|\, 2\\0&-5&-4\; \; |7\end{array}\right) \; \left\begin{array}{ccc}\\\cdot5\\\cdot 3\end{array}\right \oplus\sim \\\\\\ \sim \left(\begin{array}{ccc}1&1&3\; \; |\; 1\\0&3&-16\, |\; 2\\0&0&-92\; |\; 31\end{array}\right) \\\\\\-92\gamma=31\; ,\; \; \gamma=- \frac{31}{92} \\\\3 \beta =2+16\gamma =2- \frac{16\cdot31}{92}=-\frac{312}{92}\; ,\; \; \beta =-\frac{312}{92\cdot 3}=-\frac{312}{276}

\alpha =1- \beta -3\gamma =1+\frac{312}{276}+\frac{3\cdot 31}{92}=\frac{867}{276}\\\\\\\vec{x}=\frac{867}{276}\cdot \vec{a}-\frac{312}{276}\cdot \vec{b}-\frac{31}{92} \cdot \vec{c}
4,6(11 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ