Итак , 1:4=1/4 часть бассейна наполняют обе трубы за 1 час.
Пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+6) часов. За 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+6), а обе - 1/х+1/(х+6) или 1/4 бассейна. Составим и решим уравнение:
1/х+1/(х+6)=1/4 |*4x(x+6)
4x+6+4x=x^2+6x X^2+6x-8x-6=0 X^2-2x-6=0 По идее теперь нужно по теореме Виетта или через дискриминант (или как его там) найти два икса. Один из иксов будет отрицательным наверное . А второй икс и есть наш ответ . Но у меня почему то не получается найти дискриминант . Скорее всего где-то сделала дурацкую ошибку . Но ход решения у меня верный . В этом я уверенна .
1. 5х - 2 < 0
5х < 2
x < 2/5
x < 0,4
x∈(-oo;0,4)
2. 4х + 5 > 2
4х > 2-5
4x > -3
x > -3/4
x > -0,75
x∈(-0,75;oo)
3. -5х - 8 ≤ 0
-1*(-5x-8) ≥ -1*0
5x + 8 ≥ 0
5x ≥ -8
x ≥ -8/5
x ≥ -1,6
x∈[-1,6;oo)
4. 7х + 7 < 3х
7х -3x < -7
4x < -7
x < -7/4
x < -1,75
x∈[-oo;-1,75)
5. -4х - 8 < 7 - х
-1*(-4x-8) > -1*(7 - x)
4х + 8 > x - 7
4x - x > -7 - 8
3x > -15
x > -5
x∈(-5;oo)