5 arccos 1\2 + 3 arcsin (-корень из 2\2) Оба значения табличные для cos и sin
sin ( 4 arccos ( - 1\2) - 2 arcctg корень из 3\3) Оба значения табличные для cos и ctg
6 sin^2x + 5cosx-7=0 Сначала использовать основное тригонометрическое тождество Это обыкновенное квадратное уравнение, в котором переменной является cos x , n,m∈Z
2sin^2x + sinx cosx - 3 cos^2x=0 Проверить, что не является корнем ( на ноль делить нельзя), а потом все уравнение почленно разделить на Не корень, можно делить Обыкновенное квадратное уравнение с переменной tg x n,m ∈ Z
Это уравнение с одним неизвестным с, только, как мне кажется, оно записано с ошибкой, здесь надо выражение 3с - 1 взять в скобки, потому что иначе получается, что на 14 надо делить (-1), а не (3с - 1): Общий знаменатель в данном случае - 14. Поэтому первую дробь домножаем на 2 и "двойку" во второй части уравнения домножаем на 14. Получаем после этого уравнение: 2с - (3с - 1) = 2 * 14 Открываем скобки: 2с - 3с + 1 = 28 -с = 27 с = -27 Всегда стоит проверять, правильно ли решено, т.е. подставить полученное решение с = -27 в данное уравнение. Если обе части уравнения окажутся равны, то решение правильное.
Оба значения табличные для cos и sin
sin ( 4 arccos ( - 1\2) - 2 arcctg корень из 3\3)
Оба значения табличные для cos и ctg
6 sin^2x + 5cosx-7=0
Сначала использовать основное тригонометрическое тождество
Это обыкновенное квадратное уравнение, в котором переменной является cos x
2sin^2x + sinx cosx - 3 cos^2x=0
Проверить, что
Не корень, можно делить
Обыкновенное квадратное уравнение с переменной tg x
n,m ∈ Z