Сперва нужно решить это выражение,а потом,в конечный ответ подставить соответствующие числа.начинаем: 3х²-(7ху-4х²)+(5ху-7х²)3х²-(7ху-4х²)+(5ху-7х²)=3х²-7ху+4х²+15х³-21х⁴-7ху+4х²+5ху-7х²=3х²+4х²+4х²-7х²-7ху-7ху+5ху+15х³-21х⁴=11х²-16ху+15х³-21х⁴(теперь нужно их записать с возрастанием степеней)т.е. от самой большой к самой маленькой: -21х⁴+15х³+11х²-16ху как раз теперь будем подставлять значения в числа: х=0,3 у=-10 -21*(0,3)⁴+15*(0,3)³+11*(0,3)²-16*(0,3)*(-10) теперь только осталось подсчитать на калькуляторе и все,обращяя внимание на степень)) если не трудно,то назовите ответ как лучший-ведь действительно было потрачено немало
А)y`=dy/dx (1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными ydy=eˣdx/(1+eˣ) ∫ydy=∫eˣdx/(1+eˣ) y²/2=ln|eˣ+1| + c - общее решение Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить. y²/2=lnС(eˣ+1) - общее решение при у=1 х=0 1/2=ln2C 2C=√e C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение можно умножить на 2 y²=2ln((eˣ+1)· (√e)/2) или y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx tgxdy=y㏑ydx - уравнение с разделяющимися переменными dy/ylny=dx/tgx; ∫dy/ylny=∫dx/tgx; ∫d(lny)/lny=∫d(sinx)/sinx; ln|lny)=ln|sinx|+lnC; ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4 ln|lne|=ln|Csin(π/4)| ln|1|=ln|C√2/2| 1=C√2/2 C=√2 ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
у = -1,5, а х = 5! могу решение только в ЛС