1)a1 = 26
a2 = 23
a3 = 20
Для начала найдём разность арифметической прогрессии(d) : a2 - a1
23 - 26 = -3
Теперь мы можем найти a12 по формуле n-ого члена: an = a1 + (n-1)d
a12= 26 + 11 * (-3)
a12 = 26 + (33)
a12 = -7
Ну и теперь найдём сумму 12-ти членов прогрессии по формуле : Sn = (a1+an /2) * n
S12 = (26 + (-7) / 2)) * 12 = 114 2)Решение.1. a1=11; d=4; an=99; n=(an-a1)/d+1; n=(99-11)/4+1=23; Sn=0,5*(22+4*22)*23=1265.
2.d=12/3=4; 2*a1+8*d=4; a1=-14; a2=-10; a3=-6.
Y= - 2,5X - 6
Объяснение:
Чертим график лин. ФУНК. y=-3x+1 и ставим точку с координатами (-2; - 1).
Через эту точку проводим прямую перпендикулярно линейной функции y=-3x+1.
Формула линейной функции равна y=kx+m, теперь находим две точки на графике второй лин фун 1) с координатами (0; - 6), 2) с координатами (-2; - 1). Поставляем в формулу лин фун координаты точки 1) и получается - 6=0k+ m то есть m=-6.
Мы нашли m. Теперь k. Поставляем в формулу лин фун координаты точки 2) и m и получается - 1=-2k - 6 то есть 2k=-5 то есть k=-2,5. Мы узнали k и m. Поставляем их в формулу лин фун и получается y= - 2,5x - 6. Готово!
Если что, лин фун это линейная функция
Я понятно объяснил?
4х^4-х^2=0
х^2(4х^2-1)=0
х^2=0 или 4х^2-1=0
х=0 4х^2=1
х=1/2
х^4-9х^2=0
х^2(х^2-9)=0
х^2=0 или х^2-9=0
х=0 х^2=9
х=3