Первое число, кратное 6 и большее 100 - это число 102.
Можно рассматривать последовательность этих чисел как арифметическую прогрессию, у которой а₁ = 102, разность d = 6.
Найдем количество элементов последовательности n.
Формула n-го члена арифметической прогрессии an = а₁ + d(n - 1).
an < 200, поэтому решим неравенство а₁ + d(n - 1) < 200 и найдем n:
102 + 6 · (n - 1) < 200,
102 + 6n - 6 < 200,
6n + 96 < 200,
6n < 200 - 96,
6n < 104,
n < 17 целых 2/6, т.е. n < 17 целых 1/3. Значит, n = 17.
Формула суммы n первых членов арифметической прогрессии:
Sn = (2а₁ + d(n - 1))/2 · n.
S₁₇ = (2 · 102 + 6 · 16)/2 · 17 = (204 + 96)/2 · 17 = 300/2 · 17 = 150 · 17 = 2550.
ответ: 2550.
Пусть x км/ч - скорость велосипедиста.
Тогда (x+30) км/xч - скорость мотоциклиста.
Каждый проехал 15 км, т.к. встретились на середине.
Т.к. мотоциклист выехал на 40 минут позже, значит, велосипедист ехал на 40 минут дольше мотоциклиста. 40 минут = 2/3 часа. Отсюда уравнение:
15/x-15/(x+30)=2/3
450/(x²+30x)=2/3
3*450=2*(x²+30x)
1350=2x₂+60x
2x²+60x-1350=0 |:2
x²+30x-675=0
D=900+2700=3600
x₁=15
x₂=-45 <- посторонний корень
Скорость велосипедиста - 15 км/ч. Значит, скорость мотоциклиста - 45 км/ч.
Объяснение:
У первых двух дробей общий, а значит, можно выполнить действия в числителе, записав дробь под общий знаменатель, тогда
100a²-9b=(10a-3√b)*(10a+3√b). Сократим на (10a+3√b) и получим (10a-3√b)
То же самое сделаем и в числителе второй дроби a-b=(√a-√b)(√a+√b). Сократим на (√a+√b) и получим (√a-√b)
√32=√(16*2)=4√2, 8√2-4√2=4√2
√96=4√6, 4√6-3√6=√6