1.Чтобы убедиться в том, что число является корнем уравнения нужно подставить его вместо Х и если получается верное равенство - то это корень уравнения. Если же нет, то этот корень не подходит. Подставляем -2 в первое уравнение. получиться -2*7+4=-10. -14+4=-10 -10=-10 следовательно, число -2 является корнем уравнения.
Подставим это же число во второе уравнение: -3*(-2)-5=2*(-2)+5 6-5=5-4 1=1 следовательно, число -2 является корнем и второго уравнения.
2.Решаем уравнения. сначала перенесем все иксы в левую часть и всё остальное - в правую -5х+1=3х+2 получим: -8х=1 х=1/-8 сл-но х=-1/8=-0.125 второе уравнение: 8х-6=3х+2 снова перенесем иксы в левую часть: 8х-3х=6+2 5х=8 х=8/5= 1 целая и 3/5 переведем в десятичную дробь: 1 3/5 =1 6/10=1,6. вот и всё!
Тут нету ничего сложного, во-первых, запомни четыре главных правила, ведь именно они тебе и понять четна или нечетная, а может быть и ни нечетная и ни четная функция тебе попалась: cos(-x) = cosx sin(-x)= - sinx tg(-x) = - tgx ctg(-x) = - ctgx Теперь, например, возьмем функцию y = 2* sin4x f(x) = 2 * sin(4*(-x)) => f(x) = -2sin4x( т.е. функция поменяла свой знак, следовательно, она нечетная) Но также бывают случаи, когда sinx оказывается четным.Например, y=2*sin^2(x). т.к. синус в квадрате, то, когда мы будем выносить минус из-под него, знак не поменяется, т.к. квадрат С косинусом он всегда будет четным. Бывают случаи, когда функция является ни нечетн. и ни четн. Например: y=sin(x)-x^2 вроде бы функция должна быть не четная, т.к. синус без квадрата, но f(-x) = -sinx-x^2 т.е. функция никакая, т.к. синус поменял свой знак, а икс в квадрате нет.
ответ: см фото.
Объяснение: