Самое главное - при необходимости нужно пересчитать на те единицы измерения, которые указаны в задаче. Если задача письменная, то есть будут смотреть ход её решения и ответ, то записывать ответ с единицами измерения это как хороший тон.
Но если задача, например, на экзамене в так называемой "тестовой" части, то единицы измерения писать не надо, об этом даже будет сказано в инструкциях/пояснениях в КИМах.
Или если где-то в электронном виде решаете и вбиваете ответ в специальное поле, то там тоже (на 99.9%) не надо вбивать единицы измерения.
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.