x = 4
Объяснение:
5x-6=3x+2
5x-6-3x=2
5x-3x=2+6
2x=2+6
2x=8
x=8/2
x=4
Объяснение:
Число a - корень многочлена P(x) тогда и только тогда, когда P(x) делится без остатка на двучлен x−a .
Отсюда, в частности, следует, что множество корней многочлена P(x) тождественно множеству корней соответствующего уравнения P(x)=0 .
Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами (если старший коэффициент равен 1, то все рациональные корни являются и целыми).
Пусть a - целый корень приведенного многочлена P(x) с целыми коэффициентами. Тогда для любого целого k число P(k) делится на a−k .
Теорема Безу дает возможность, найдя один корень многочлена, искать далее корни многочлена, степень которого уже на единицу меньше: если P(a)=0, то заданный многочлен P(x) можно представить в виде:
P(x)=(x−a)Q(x)
Таким образом, один корень найден и далее находятся уже корни многочлена Q(x), степень которого на единицу меньше степени исходного многочлена. Иногда этим приемом - он называется понижением степени - можно найти все корни заданного многочлена.
Объяснение:
При n=1 верность неравенства очевидна.
При n=2, получаем известное верное неравенство, оно нам понадобится.
Теперь докажем, что из верности неравенство верно для n=m, следует его верность для n=2m.
В самом деле, пусть неравенство верно для n=m. Нам нужно доказать, что тогда верно и неравенство
Так как неравенство верно для n=m (по индуктивному предположению), можем записать такие два неравенства:
Теперь сложим эти неравенства и разделим обе части полученного на 2. Получится вот такое неравенство:
Но использовав неравенство для n=2 получаем:
Тогда и подавно
А теперь, следуя за Коши (который как раз первым доказал это неравенство), заметим, что из доказанного выше следует, что если неравенство верно для (где k - натуральное), то оно верно и для . Действительно, чтобы доказать это, достаточно положить , тогда и неравенство также верно. А так как неравенство верно для n=2, то по индукции отсюда получаем верность неравенства для всех остальных степеней двойки, то есть для чисел вида при любом натуральном . Это утверждение назовём Леммой 1.
Осталось доказать, что из верности неравенства для n=k, следует его верность для n=k-1. Это будет наша Лемма 2.
Ну что же, раз в задании дана такая превосходная подсказка - воспользуемся ей. Найдём такой x, о котором идёт речь в задании. Он выражается из данной в условии формулы очевидным образом, не буду на этом останавливаться:
Теперь пусть неравенство верно для произвольного n=k.
Применим это неравенство к числам :
Что получится в левой части мы знаем - среднее арифметическое чисел . Далее возводим неравенство в степень k и преобразовываем:
Получили как раз неравенство для n=k-1.
Собственно, неравенство можно считать доказанным. Лемма 1 и Лемма 2 решают вопрос для любого n. В самом деле, возьмём произвольное натуральное n. Очевидно, найдётся такое натуральное , что . Неравенство верно для этой степени двойки (Лемма 1). Но оно верно также и для всех натуральных чисел меньших её, это по индукции следует из Леммы 2. Тогда неравенство верно и для нашего произвольно выбранного n.
Привеет!)
ответ: х=4