М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
TheGrigory
TheGrigory
26.04.2021 08:46 •  Алгебра

При каких значениях а, вектор 2а+аб перпендикулярен вектору b-ā, если ā(1; -1; 3) и ​

👇
Открыть все ответы
Ответ:
angelinadvuradkina
angelinadvuradkina
26.04.2021
Знаешь, при подстановке не всегда хорошее уравнение получается, вряд ли ты умеешь такие решать, поэтому надо попробовать метод замены переменной. Например, xy=a, a^2-a=12; a^2-a-12=0; D=1-4*(-12)=49;
a= \frac{1б7}{2}; a_1=4; a_2=-3;, вот теперь мы можем заменить первое уравнение на более простое и решить 2 системы, объединив их решения. \left \{ {{xy=4} \atop {x=2-y}} \right. ; \left \{ {{x= \frac{4}{y} } \atop {x=2-y}} \right.; \frac{4}{y}=2-y; \frac{4-y(2-y)}{y}=0; y^2-2y+4=0; y \neq 0; D_1=1-4, корней нет. Решаем вторую систему: \left \{ {{xy=-3} \atop {x=2-y}} \right.; \left \{ {{x=- \frac{3}{y} } \atop {x=2-y}} \right.;- \frac{3}{y}=2-y; \frac{-3-y(2-y)}{y}=0; y^2-2y-3=0; y \neq 0; Здесь b=a+c (-2=1-3), тогда y_1=-1; y_2=- \frac{c}{a}=- \frac{-3}{1}=3;, а теперь в любое уравнение подставляем каждое из получившихся и в ответе пишем 2 точки: \left \{ {{y=-1} \atop {x=2-(-1)=3}} \right.; \left \{ {{y=3} \atop {x=2-3=-1}} \right. ;, получили точки (3;-1);(-1;3). Довольно похожие значения, объясняется это всё квадратами в первом уравнении системы. ответ:(3;-1);(-1;3).
4,5(89 оценок)
Ответ:
mn197
mn197
26.04.2021

№13 - \frac{3}{4} = 0.75

№14 - 2

№15 - 2

Объяснение:

По определению производной:

f'(x)=\lim_{\Delta x \to \infty} \frac{f(x + \Delta x)-f(x)}{\Delta x}\\\Delta x = x_2 - x_1

Заметим, что \frac{f(x + \Delta x)-f(x)}{\Delta x} - это отношение \frac{\Delta y}{\Delta x}, т.е. тангенс угла наклона касательной в точке x_0.

Тогда совершенно очевидно, как решать подобного рода задачи:

анализируем только касательнуюнаходим точку, где касательная проходит через угол клеточкинаходим тангенс угла, образованного осью ox и касательной.

На примере задания №14:

смотрим на прямуювидим, что она проходит через точку (2; \: 4)находим тангенс (делим противолежащий катет на прилежащий, в данном случае - высоту на длину)ответ: 2
4,6(79 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ