ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.
1)S=1,3 * 0,5 *a*b=0,65ab . Значит, площадь уменьшилась на 100-65=35 %
2)Дано:
ABCD – трапеция,
АС и AD – диагонали трапеции,
Х – середина АС, Y – середина BD.
ХY = 2 см, AD= 7см
Найти: ВС – меньшее основание трапеции
1. Докажем, что отрезок, соединяющий середины диагоналей трапеции равен полуразности оснований.
MX – средняя линия треугольника АВС, следовательно, MX=BC/2
NY – средняя линия треугольника DBC, следовательно, NY=BC/2
MN = (AD+BC)/2
XY=MN – MX – NY = (AD+BC)/2 – BC/2 – BC/2 = (AD-BC)/2
XY =(AD-BC)/2 (теперь это доказано)
2. Найдём ВС:
(AD-BC)/2=XY
AD-BC=2XY
В это выражение подставим значения AD=7 см и ХУ=2 см (из условия задачи):
7 –BC=2*2
7 – BC= 4
BC = 3 (см) - длина меньшего основания трапеции
Объяснение: