Неопределенные системы линейных уравнений - метод решения, пример посвящено вопросу о том, как решать неопределенные системы. Если рассматривать систему, состоящую из n уравнений с n неизвестными, т.е. системы, матрица коэффициентов которых - квадрат, то необходимым условием её решения методом Крамера или матричным методом является неравенство нулю её определителя. Т.е. если определитель матрицы равен нулю, то решить такую систему указанными методами нельзя. Но это совсем не означает, что эта система уравнений не имеет решения вообще. В этом случае возможны два варианта. Первый из них, это когда решений действительно нет, т.е. система несовместна. Во втором случае система имеет множество решений (неопределенная система). Именно для решения таких систем и предназначен метод, который будет рассмотрен в данном видео уроке. Здесь также будет решен пример, в котором требуется решить неопределенную систему линейных уравнений. Процесс решения системы сопровождается подробным объяснением. Видео урок «Неопределенные системы линейных уравнений - метод решения, пример» вы можете смотреть онлайн в любое время абсолютно бесплатно. Успехов!
Объяснение:
лучший ответ
В решении.
Объяснение:
1) (х - 4)/5 < (2х + 4)/9 + 9
Умножить все части неравенства на 45, чтобы избавиться от дробного выражения:
9*(х - 4) < 5*(2x + 4) + 45*9
9x - 36 < 10x + 20 + 405
9x - 10x < 425 + 36
-х < 461
x > -461
При х > -461 первое выражение меньше второго.
2) (х + 17)/5 = 3(х - 5)/4
Умножить все части уравнения на 20, чтобы избавиться от дробного выражения:
4*(х + 17) = 5*3(х - 5)
4х + 68 = 15х - 75
4х - 15х = -75 - 68
-11х = -143
х = -143/-11
х = 13.
При х = 13 первое выражение не больше второго (равно ему).
.
Объяснение:
бесконечность +1