М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tom159753
tom159753
06.10.2020 10:14 •  Алгебра

Найдите наибольшее и наименьшее значения С1


Найдите наибольшее и наименьшее значения С1

👇
Открыть все ответы
Ответ:
яяяяяя60
яяяяяя60
06.10.2020
{a1+ a6=11    a2+a4=10
Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d)
a2=a1+d        a4=a1+3d        a6=a1+5d и подставим в систему:
{a1+a1+5d=11        a1+d+a1+3d=10
{2a1+5d=11              2a1+4d=10
Решим систему методом сложения. Умножим первое уравнение на (-1)  и сложим со вторым:
{-2a1-5d=-11    +    2a1+4d=10
-d=-1
d=1
2a1+4=10
a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.)
По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии:
S6=(2·3+5 )\2·6=33      (Sn=(2a1+d(n-1))\2·n)
ответ:33  
4,7(5 оценок)
Ответ:
sergey1234567891011
sergey1234567891011
06.10.2020

Объяснение:

0\hfill\\x-3>0\hfill\\x-3\ne1\hfill\\\end{gathered}\right.\Leftrightarrow\left\{\begin{gathered}x>-1\hfill\\x>3\hfill\\x\ne4\hfill\\\end{gathered}\right.\hfill\\\boxed{x\in(3;+\infty)}\hfill\\\end{gathered}\]" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bgathered%7D2%29%5C%3B%5C%3B%7B%5Clog_%7Bx-3%7D%7D%28x%2B1%29%5Chfill%5C%5C%5Cleft%5C%7B%5Cbegin%7Bgathered%7Dx%2B1%3E0%5Chfill%5C%5Cx-3%3E0%5Chfill%5C%5Cx-3%5Cne1%5Chfill%5C%5C%5Cend%7Bgathered%7D%5Cright.%5CLeftrightarrow%5Cleft%5C%7B%5Cbegin%7Bgathered%7Dx%3E-1%5Chfill%5C%5Cx%3E3%5Chfill%5C%5Cx%5Cne4%5Chfill%5C%5C%5Cend%7Bgathered%7D%5Cright.%5Chfill%5C%5C%5Cboxed%7Bx%5Cin%283%3B%2B%5Cinfty%29%7D%5Chfill%5C%5C%5Cend%7Bgathered%7D%5C%5D" title="\[\begin{gathered}2)\;\;{\log_{x-3}}(x+1)\hfill\\\left\{\begin{gathered}x+1>0\hfill\\x-3>0\hfill\\x-3\ne1\hfill\\\end{gathered}\right.\Leftrightarrow\left\{\begin{gathered}x>-1\hfill\\x>3\hfill\\x\ne4\hfill\\\end{gathered}\right.\hfill\\\boxed{x\in(3;+\infty)}\hfill\\\end{gathered}\]">

4,7(14 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ