y=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).
Подробнее - на -
Объяснение:
ответ:
разделим на 2 каждый член уравнения
\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cos x =\frac{\sqrt{2}}{2}
2
3
sinx+
2
1
cosx=
2
2
\begin{lgathered}\frac{\sqrt{3}}{2}=cos{\frac{\pi}{6}}\\ \frac{1}{2}=sin{\frac{\pi}{6}}\\ sin(x+\frac{\pi}{6})=\frac{\sqrt{2}}{2}\\ x+\frac{\pi}{6} = \frac{\pi}{4}+2\pi n\\ x= -\frac{\pi}{6} + \frac{\pi}{4}+2\pi n\\ x = \frac{\pi}{12}+2\pi n\\ \\ x+\frac{\pi}{6} = \pi-\frac{\pi}{4}+2\pi n\\ x+\frac{\pi}{6} = \frac{3\pi}{4}+2\pi n\\ x=-\frac{\pi}{6} + \frac{3\pi}{4}+2\pi n\\ x = \frac{7\pi}{12}+2\pi {lgathered}
2
3
=cos
6
π
2
1
=sin
6
π
sin(x+
6
π
)=
2
2
x+
6
π
=
4
π
+2πn
x=−
6
π
+
4
π
+2πn
x=
12
π
+2πn
x+
6
π
=π−
4
π
+2πn
x+
6
π
=
4
3π
+2πn
x=−
6
π
+
4
3π
+2πn
x=
12
7π
+2πn
это ответ