Треугольник ЕСF будет подобен треугольнику АЕD по двум углам (угол CEF равен углу AED, как вертикальные углы, угол ADE будет равен углу FCE, как накрест лежащие углы, образованные при пересечении двух параллельных прямых BC и AD секущей CD). В подобных треугольниках стороны пропорциональны, значит СF/AD = EC/ED. AB=CD=8 (как противоположные стороны параллелограмма). СD= EC+ED, а отсюда ED = CD-EC. Пусть EC=х, тогда CF/AD = х/8-х, 2/5=х/8-х, 5х=2(8-х), 7х=16, х= 2 целых 2/7. Значит, EC = 2 целых 2/7. Тогда ED=CD-EC=8-2 целых 2/7= 5 целых 5/7
1) y = x^4 - 8x^2 + 3; x ∈ [ -2; 2]. y '(x) = 4x^3 - 16 x = 4x(x^2 - 4) = 4x(x-2)(x+2); y '(x) = 0; ⇒ x = - 2; x = 0; x = 2. y ' - + - + (-2)(0)(2)x y убыв. возр убыв возр. ⇒ х = - 2 и х = 2 - это точки минимума, а х = 0 - точка максимума. То есть наибольшее значение ф-ции будет в точке максимума х =0. f наиб= f(0) = 0 - 0 +3 = 3. Функция четная, поэтому значение f(-2) = f(2); fнаим = f(2) = 2^4 - 8*2^2 + 3 = 16 - 32 + 3 = - 13.
2) y = 1/2 * x - sin x; x∈ [0; pi/2]. y '(x) = 1/2 - cos x; y '(x) = 0; ⇒ 1/2 - cos x = 0; cos x = 1/2; x = + - pi/3 + 2pik; k-Z. заданному интервалу принадлежит стацион.точка х = pi/3. Проверим значение ф-ции в этой точке и на концах интервала. f(0) = 1/2 * 0 - sim 0 = 0; f(pi/3) = 1/2 * pi/3 - sin pi/3 = pi/6 - sgrt3/2 < 0; f(pi/2) = 1/2 * pi/2 - sin pi/2= pi/4 - 1 <0; pi/6 - sgrt3/2 ≈ - 0,34; pi/4 - 1 ≈ - 0,22; ⇒ f наиб= f(0) = 0; f наим = f(pi/3) = pi/6 - sgrt3/2.