Действительно, решений на множестве действительных чисел данное уравнение не имеет. Это можно доказать так: пусть sin15x = n, sinx - n*cosx = 3/2 √(1+n^2)(sinx/√(1+n^2) - n*cosx/√(1+n^2)) = 3/2 (метод введения вс угла) √(1+n^2)*sin(x-y) = 3/2, где 1/(√(1+n^2)) = cosy sin(x-y) = 3/[2*√(1+n^2)], потому 3/[2*√(1+n^2)]< или = 1 (по свойству синуса) Отсюда выражаем n: n^2 ≥ 5/4, (sin15x)^2≥ 5/4, что невозможно. Следовательно, уравнение решений не имеет.
Наша функция содержит знак модуля. Следовательно, необходимо рассмотреть две ситуации: 1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз, вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх. Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный. 2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх, вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.
Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
пусть sin15x = n,
sinx - n*cosx = 3/2
√(1+n^2)(sinx/√(1+n^2) - n*cosx/√(1+n^2)) = 3/2 (метод введения вс угла)
√(1+n^2)*sin(x-y) = 3/2, где 1/(√(1+n^2)) = cosy
sin(x-y) = 3/[2*√(1+n^2)], потому 3/[2*√(1+n^2)]< или = 1 (по свойству синуса)
Отсюда выражаем n:
n^2 ≥ 5/4, (sin15x)^2≥ 5/4, что невозможно.
Следовательно, уравнение решений не имеет.